Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Malware Detection in IoT Networks: Leveraging Resource-Aware Distributed Computing for Enhanced Security (2404.10012v1)

Published 12 Apr 2024 in cs.CR and cs.DC

Abstract: In recent years, networked IoT systems have revolutionized connectivity, portability, and functionality, offering a myriad of advantages. However, these systems are increasingly targeted by adversaries due to inherent security vulnerabilities and limited computational and storage resources. Malicious applications, commonly known as malware, pose a significant threat to IoT devices and networks. While numerous malware detection techniques have been proposed, existing approaches often overlook the resource constraints inherent in IoT environments, assuming abundant resources for detection tasks. This oversight is compounded by ongoing workloads such as sensing and on-device computations, further diminishing available resources for malware detection. To address these challenges, we present a novel resource- and workload-aware malware detection framework integrated with distributed computing for IoT networks. Our approach begins by analyzing available resources for malware detection using a lightweight regression model. Depending on resource availability, ongoing workload executions, and communication costs, the malware detection task is dynamically allocated either on-device or offloaded to neighboring IoT nodes with sufficient resources. To safeguard data integrity and user privacy, rather than transferring the entire malware detection task, the classifier is partitioned and distributed across multiple nodes, and subsequently integrated at the parent node for comprehensive malware detection. Experimental analysis demonstrates the efficacy of our proposed technique, achieving a remarkable speed-up of 9.8x compared to on-device inference, while maintaining a high malware detection accuracy of 96.7%.

Summary

We haven't generated a summary for this paper yet.