Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Heterogeneity of the Förster Radius from Dipole Orientational Dynamics Impacts Single-Molecule FRET Experiments (2404.09883v2)

Published 15 Apr 2024 in physics.chem-ph, physics.bio-ph, physics.comp-ph, physics.data-an, and stat.CO

Abstract: F\"orster resonance energy transfer (FRET) is a quantum mechanical phenomenon involving the non-radiative transfer of energy between coupled electric dipoles. Due to the strong dependence of FRET on the distance between the dipoles, it is frequently used as a ``molecular ruler" in biology, chemistry, and physics. This is done by placing dipolar molecules called dyes on molecules of interest. In time-resolved confocal single-molecule FRET (smFRET) experiments, the joint distribution of the FRET efficiency and the donor fluorescence lifetime can reveal underlying molecular conformational dynamics via deviation from their theoretical F\"orster relationship. This deviation is referred to as a dynamic shift. Quantifying the dynamic shift caused by the motion of the fluorescent dyes is essential to decoupling the dynamics of the studied molecules and the dyes. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based on first principle physics and proper dye linker chemistry to match accessible volumes predicted by molecular dynamics simulations. By simulating the dyes' stochastic translational and rotational dynamics, we show that the observed dynamic shift can largely be attributed to the mutual orientational dynamics of the electric dipole moments associated with the dyes, not their accessible volume. Our models provide the most up-to-date and accurate estimation of FRET.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. R. M. Clegg, Fluorescence resonance energy transfer, Fluorescence imaging spectroscopy and microscopy 137, 179 (1996).
  2. R. Roy, S. Hohng, and T. Ha, A practical guide to single-molecule fret, Nature methods 5, 507 (2008).
  3. D. R. Walt, Optical methods for single molecule detection and analysis, Analytical chemistry 85, 1258 (2013).
  4. R. S. Knox, Förster’s resonance excitation transfer theory: not just a formula, Journal of Biomedical Optics 17, 011003 (2012).
  5. H. R. Stryer L, Energy transfer: a spectroscopic ruler., Proc Natl Acad Sci U S A. 58(2), 719 (1967).
  6. B. Schuler and W. A. Eaton, Protein folding studied by single-molecule fret, Current opinion in structural biology 18, 16 (2008).
  7. T. D. Craggs and A. N. Kapanidis, Six steps closer to fret-driven structural biology, nature methods 9, 1157 (2012).
  8. B. Schuler, Single-molecule fret of protein structure and dynamics-a primer, Journal of nanobiotechnology 11, 1 (2013).
  9. I. V. Gopich and A. Szabo, Single-molecule fret with diffusion and conformational dynamics, The Journal of Physical Chemistry B 111, 12925 (2007a).
  10. H. P. Lu, Probing single-molecule protein conformational dynamics, Accounts of Chemical Research 38, 557 (2005), pMID: 16028890, https://doi.org/10.1021/ar0401451 .
  11. T. Ha, Single-molecule fluorescence resonance energy transfer, Methods 25, 78 (2001).
  12. X. Michalet, S. Weiss, and M. Jager, Single-molecule fluorescence studies of protein folding and conformational dynamics, Chemical reviews 106, 1785 (2006).
  13. S. Weiss, Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy, Nature Structural Biology 7, 724 (2000).
  14. I. V. Gopich and A. Szabo, Single-molecule fret with diffusion and conformational dynamics, The Journal of Physical Chemistry B 111, 12925 (2007b), pMID: 17929964, https://doi.org/10.1021/jp075255e .
  15. H. P. Lu and X. S. Xie, Single-molecule kinetics of interfacial electron transfer, The Journal of Physical Chemistry B 101, 2753 (1997), https://doi.org/10.1021/jp9634518 .
  16. I. V. Gopich and A. Szabo, Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule fret, Proceedings of the National Academy of Sciences 109, 7747 (2012).
  17. X. S. Xie and R. C. Dunn, Probing single molecule dynamics, Science 265, 361 (1994), https://www.science.org/doi/pdf/10.1126/science.265.5170.361 .
  18. T. Graen, M. Hoefling, and H. Grubmuller, Amber-dyes: characterization of charge fluctuations and force field parameterization of fluorescent dyes for molecular dynamics simulations, Journal of Chemical Theory and Computation 10, 5505 (2014).
  19. K. Kinosita, S. Kawato, and A. Ikegami, A theory of fluorescence polarization decay in membranes, Biophysical journal 20, 289 (1977).
  20. Y. Peng, M. Koirala, and E. Alexov, Electrostatic force driven molecular dynamics simulations, Biophysical Journal 116, 290a (2019).
  21. G. Hamilton and H. Sanabria, Multiparameter fluorescence spectroscopy of single molecules, in Spectroscopy and dynamics of single molecules (Elsevier, 2019) pp. 269–333.
  22. B. W. VanDerMeer, Kappaphobia is the elephant in the fret room, Methods and applications in fluorescence 8, 030401 (2020).
  23. B. Van der Meer, Kappa-squared: from nuisance to new sense, Reviews in Molecular Biotechnology 82, 181 (2002).
  24. R. E. Dale, J. Eisinger, and W. Blumberg, The orientational freedom of molecular probes. the orientation factor in intramolecular energy transfer, Biophysical journal 26, 161 (1979).
  25. E. A. Jares-Erijman and T. M. Jovin, Fret imaging, Nature Biotechnology 21 (2003).
  26. D. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics (Springer Berlin Heidelberg, 2004).
  27. S. M. Ross, Introduction to Probability Models (Academic Press, 2014).
  28. N. M. Van Dijk, Uniformization for nonhomogeneous markov chains, Operations research letters 12, 283 (1992).
  29. J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, 2006).
  30. G. Casella and R. L. Berger, Statistical inference (Cengage Learning, 2021).
  31. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Graduate texts in mathematics (World Publishing Company, 1988).
  32. N. Pottier, Nonequilibrium statistical physics: linear irreversible processes (Oxford University Press, 2009).
  33. B. Øskendal, Stochastic Differential Equations: An Introduction with Applications (Springer - Verlag, 1995).
  34. C.-P. S. Hsu et al., Infrared spectroscopy, Handbook of instrumental techniques for analytical chemistry 249 (1997).
  35. B. H. Lavenda, Nonequilibrium statistical thermodynamics (Courier Dover Publications, 2019).
  36. V. I. Arnol’d, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
  37. E. P. Hsu, Stochastic Analysis on Manifolds (American Mathematical Society, 2002).
  38. D. R. Brillinger, A particle migrating randomly on a sphere, Selected Works of David Brillinger , 73 (2012).
  39. R. P. Dobrow, Introduction to stochastic processes with R (John Wiley & Sons, 2016).

Summary

We haven't generated a summary for this paper yet.