Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Nonlinear chiral quantum optics with giant-emitter pairs (2404.09829v1)

Published 15 Apr 2024 in quant-ph

Abstract: We propose a setup which combines giant emitters (coupling to light at multiple points separated by wavelength distances) with nonlinear quantum optics and its correlated photons. In this setup, we reveal a mechanism for multiphoton chiral emission: the propagation phase of the center of mass of two strongly correlated photons (a doublon), and the phases encoded in the coupling points of two giant emitters, can yield completely destructive interference in one propagation direction while supporting emission in the other direction. The degree of chirality can be tuned by the phases of the couplings. We show that the proposed setup can provide directional quantum many-body resources, and can be configured as a building block for a chiral quantum network with ``correlated flying qubits'', enabling distinct applications beyond linear chiral setups. Our findings point toward a rich landscape of tailoring multiphoton propagation and correlation properties by exploiting interference effects of giant emitters coupling to nonlinear photonic baths.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. K. Y. Bliokh and F. Nori, Transverse and longitudinal angular momenta of light, Phys. Rep. 592, 1 (2015).
  2. H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
  3. K. Stannigel, P. Rabl, and P. Zoller, Driven-dissipative preparation of entangled states in cascaded quantum-optical networks, New Journal of Physics 14, 063014 (2012).
  4. T. E. Northup and R. Blatt, Quantum information transfer using photons, Nature Photonics 8, 356 (2014).
  5. S. Mahmoodian, P. Lodahl, and A. S. Sørensen, Quantum Networks with Chiral-Light–Matter Interaction in Waveguides, Phys. Rev. Lett. 117, 240501 (2016).
  6. N. Imoto, H. A. Haus, and Y. Yamamoto, Quantum nondemolition measurement of the photon number via the optical Kerr effect, Phys. Rev. A 32, 2287 (1985).
  7. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).
  8. D. E. Chang, V. Vuletic, and M. D. Lukin, Quantum nonlinear optics – photon by photon, Nature Photonics 8, 685 (2014).
  9. K. E. Dorfman, F. Schlawin, and S. Mukamel, Nonlinear optical signals and spectroscopy with quantum light, Rev. Mod. Phys. 88, 045008 (2016).
  10. P. Solano, P. Barberis-Blostein, and K. Sinha, Dissimilar collective decay and directional emission from two quantum emitters, Phys. Rev. A 107, 023723 (2023).
  11. D. Roy, C. M. Wilson, and O. Firstenberg, Colloquium: Strongly interacting photons in one-dimensional continuum, Rev. Mod. Phys. 89, 021001 (2017).
  12. A. Frisk Kockum, Quantum Optics with Giant Atoms – the First Five Years, in Mathematics for Industry (Springer Singapore, 2020) pp. 125–146.
  13. A. Frisk Kockum, P. Delsing, and G. Johansson, Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom, Phys. Rev. A 90, 013837 (2014).
  14. A. Ask, Y.-L. L. Fang, and A. F. Kockum, Synthesizing electromagnetically induced transparency without a control field in waveguide QED using small and giant atoms, arXiv:2011.15077  (2020).
  15. A. Soro and A. F. Kockum, Chiral quantum optics with giant atoms, Phys. Rev. A 105, 023712 (2022).
  16. A. Soro, C. S. Muñoz, and A. F. Kockum, Interaction between giant atoms in a one-dimensional structured environment, Phys. Rev. A 107, 013710 (2023).
  17. Q.-Y. Qiu, Y. Wu, and X.-Y. Lü, Collective radiance of giant atoms in non-Markovian regime, Sci. China Phys. Mech. 66 (2023).
  18. A. González-Tudela, C. S. Muñoz, and J. I. Cirac, Engineering and Harnessing Giant Atoms in High-Dimensional Baths: A Proposal for Implementation with Cold Atoms, Phys. Rev. Lett. 122, 203603 (2019).
  19. A. Carollo, D. Cilluffo, and F. Ciccarello, Mechanism of decoherence-free coupling between giant atoms, Phys. Rev. Res. 2, 043184 (2020).
  20. W. Zhao and Z. Wang, Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points, Phys. Rev. A 101, 053855 (2020).
  21. L. Du, Y.-T. Chen, and Y. Li, Nonreciprocal frequency conversion with chiral ΛΛ\mathrm{\Lambda}roman_Λ-type atoms, Phys. Rev. Res. 3, 043226 (2021).
  22. X. Wang and H.-R. Li, Chiral quantum network with giant atoms, Quantum Sci. Technol. 7, 035007 (2022).
  23. C. Joshi, F. Yang, and M. Mirhosseini, Resonance Fluorescence of a Chiral Artificial Atom, Phys. Rev. X 13, 021039 (2023).
  24. A. F. Kockum, G. Johansson, and F. Nori, Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics, Phys. Rev. Lett. 120, 140404 (2018).
  25. L. Du, L. Guo, and Y. Li, Complex decoherence-free interactions between giant atoms, Phys. Rev. A 107, 023705 (2023b).
  26. D. D. Noachtar, J. Knörzer, and R. H. Jonsson, Nonperturbative treatment of giant atoms using chain transformations, Phys. Rev. A 106, 013702 (2022).
  27. K. H. Lim, W. K. Mok, and L. C. Kwek, Oscillating bound states in non-Markovian photonic lattices, Phys. Rev. A 107, 023716 (2023).
  28. Y.-M. Wang and J.-Q. Liang, Repulsive bound-atom pairs in an optical lattice with two-body interaction of nearest neighbors, Phys. Rev. A 81, 045601 (2010).
  29. M. A. Gorlach and A. N. Poddubny, Topological edge states of bound photon pairs, Phys. Rev. A 95, 053866 (2017).
  30. M. Lyubarov and A. Poddubny, Edge states of photon pairs in cavity arrays with spatially modulated nonlinearity, Phys. Rev. A 100, 053813 (2019).
  31. S. Flannigan and A. J. Daley, Enhanced repulsively bound atom pairs in topological optical lattice ladders, Quantum Science and Technology 5, 045017 (2020).
  32. J. Talukdar and D. Blume, Photon-induced dropletlike bound states in a one-dimensional qubit array, Phys. Rev. A 108, 023702 (2023).
  33. See Supplementary Material at http://xxx for detailed derivations of our main results, also citing.
  34. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1997).
  35. M. F. Yanik and S. Fan, Time Reversal of Light with Linear Optics and Modulators, Phys. Rev. Lett. 93, 173903 (2004).
  36. C. Wang, R. Martini, and C. P. Search, Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides, Phys. Rev. A 86, 063832 (2012).
  37. Y.-S. Ye et al., Propagation and Localization of Collective Excitations on a 24-Qubit Superconducting Processor, Phys. Rev. Lett. 123, 050502 (2019).
  38. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012).
  39. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
  40. R. Piil and K. Mølmer, “Tunneling couplings in discrete lattices, single-particle band structure, and eigenstates of interacting atom pairs,” Phys. Rev. A 76, 023607 (2007).
  41. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller,  and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105, 220501 (2010).
  42. K. Stannigel, P. Rabl, A. S. Sørensen, M. D. Lukin,  and P. Zoller, “Optomechanical transducers for quantum-information processing,” Phys. Rev. A 84, 042341 (2011).
  43. K. Stannigel, P. Rabl,  and P. Zoller, “Driven-dissipative preparation of entangled states in cascaded quantum-optical networks,” New J. Phys. 14, 063014 (2012).
  44. A. Blais, A. L. Grimsmo, S. M. Girvin,  and A. Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys. 93, 025005 (2021).
  45. B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson,  and W. D. Oliver, “Waveguide quantum electrodynamics with superconducting artificial giant atoms,” Nature 583, 775 (2020).
  46. A. M. Vadiraj, A. Ask, T. G. McConkey, I. Nsanzineza, C. W. S. Chang, A. F. Kockum,  and C. M. Wilson, “Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics,” Phys. Rev. A 103, 023710 (2021).
  47. C. Joshi, F. Yang,  and M. Mirhosseini, “Resonance fluorescence of a chiral artificial atom,” Phys. Rev. X 13, 021039 (2023).
  48. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,  and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76, 042319 (2007).
  49. Y.-S. Ye et al., “Propagation and Localization of Collective Excitations on a 24-Qubit Superconducting Processor,” Phys. Rev. Lett. 123, 050502 (2019).
  50. I. Carusotto, A. A. Houck, A. J. Kollar, P. Roushan, D. I. Schuster,  and J. Simon, “Photonic materials in circuit quantum electrodynamics,” Nat. Phys. 16, 268 (2020).
  51. M. R. Geller, E. Donate, Y. Chen, M. T. Fang, N. Leung, C. Neill, P. Roushan,  and J. M. Martinis, “Tunable coupler for superconducting Xmon qubits: Perturbative nonlinear model,” Phys. Rev. A 92, 012320 (2015).
  52. F. Wulschner, J. Goetz, F. R. Koessel, E. Hoffmann, A. Baust, P. Eder, M. Fischer, M. Haeberlein, M. J. Schwarz, M. Pernpeintner, E. Xie, L. Zhong, C. W. Zollitsch, B. Peropadre, J.-J. Garcia-Ripoll, E. Solano, K. G. Fedorov, E. P. Menzel, F. Deppe, A. Marx,  and R. Gross, “Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID,” EPJ Quantum Technol. 3, 10 (2016).
  53. M. F. Yanik and S. Fan, ‘‘Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
  54. C. Wang, R. Martini,  and C. P. Search, “Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides,” Phys. Rev. A 86, 063832 (2012).
  55. J. I. Cirac, P. Zoller, H. J. Kimble,  and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221 (1997).
  56. B. Vermersch, P.-O. Guimond, H. Pichler,  and P. Zoller, “Quantum State Transfer via Noisy Photonic and Phononic Waveguides,” Phys. Rev. Lett. 118, 133601 (2017).
  57. Z.-L. Xiang, M. Zhang, L. Jiang,  and P. Rabl, “Intracity Quantum Communication via Thermal Microwave Networks,” Phys. Rev. X 7, 011035 (2017).
  58. X. Wang and H.-R. Li, “Chiral quantum network with giant atoms,” Quantum Sci. Technol. 7, 035007 (2022).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.