Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Zero-Level Distillation to Generate High-Fidelity Magic States (2404.09740v1)

Published 15 Apr 2024 in quant-ph

Abstract: Magic state distillation plays an important role in universal fault-tolerant quantum computing, and its overhead is one of the major obstacles to realizing fault-tolerant quantum computers. Hence, many studies have been conducted to reduce this overhead. Among these, Litinski has provided a concrete assessment of resource-efficient distillation protocol implementations on the rotated surface code. On the other hand, recently, Itogawa et al. have proposed zero-level distillation, a distillation protocol offering very small spatial and temporal overhead to generate relatively low-fidelity magic states. While zero-level distillation offers preferable spatial and temporal overhead, it cannot directly generate high-fidelity magic states since it only reduces the logical error rate of the magic state quadratically. In this study, we evaluate the spatial and temporal overhead of two-level distillation implementations generating relatively high-fidelity magic states, including ones incorporating zero-level distillation. To this end, we introduce (0+1)-level distillation, a two-level distillation protocol which combines zero-level distillation and the 15-to-1 distillation protocol. We refine the second-level 15-to-1 implementation in it to capitalize on the small footprint of zero-level distillation. Under conditions of a physical error probability of $p_{\mathrm{phys}} = 10{-4}$ ($10{-3}$) and targeting an error rate for the magic state within $[5 \times 10{-17}, 10{-11}]$ ($[5 \times 10{-11}, 10{-8}]$), (0+1)-level distillation reduces the spatiotemporal overhead by more than 63% (61%) compared to the (15-to-1)$\times$(15-to-1) protocol and more than 43% (44%) compared to the (15-to-1)$\times$(20-to-4) protocol, offering a substantial efficiency gain over the traditional protocols.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, 1994.
  2. A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated quantum computation of molecular energies,” Science, vol. 309, no. 5741, pp. 1704–1707, 2005.
  3. A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical review letters, vol. 103, no. 15, p. 150502, 2009.
  4. J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
  5. A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, no. 1, p. 2–30, Jan. 2003. [Online]. Available: http://dx.doi.org/10.1016/S0003-4916(02)00018-0
  6. S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,” 1998.
  7. D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code quantum computing by lattice surgery,” New Journal of Physics, vol. 14, no. 12, p. 123011, dec 2012. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/14/12/123011
  8. D. Litinski, “A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery,” Quantum, vol. 3, p. 128, Mar. 2019. [Online]. Available: https://doi.org/10.22331/q-2019-03-05-128
  9. S. Bravyi and A. Kitaev, “Universal quantum computation with ideal clifford gates and noisy ancillas,” Phys. Rev. A, vol. 71, p. 022316, Feb 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.022316
  10. E. T. Campbell and M. Howard, “Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost,” Phys. Rev. A, vol. 95, p. 022316, Feb 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.95.022316
  11. C. Gidney and A. G. Fowler, “Efficient magic state factories with a catalyzed |C⁢C⁢Z⟩ket𝐶𝐶𝑍|CCZ\rangle| italic_C italic_C italic_Z ⟩ to 2⁢|T⟩2ket𝑇2|T\rangle2 | italic_T ⟩ transformation,” Quantum, vol. 3, p. 135, Apr. 2019. [Online]. Available: https://doi.org/10.22331/q-2019-04-30-135
  12. D. Litinski, “Magic State Distillation: Not as Costly as You Think,” Quantum, vol. 3, p. 205, Dec. 2019. [Online]. Available: https://doi.org/10.22331/q-2019-12-02-205
  13. D. Herr, F. Nori, and S. J. Devitt, “Lattice surgery translation for quantum computation,” New Journal of Physics, vol. 19, no. 1, p. 013034, jan 2017. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/aa5709
  14. T. Itogawa, Y. Takada, Y. Hirano, and K. Fujii, “Even more efficient magic state distillation by zero-level distillation,” 2024.
  15. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett., vol. 77, pp. 793–797, Jul 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.77.793
  16. D. Litinski, “Resource-cost estimates for magic state distillation.” [Online]. Available: https://github.com/litinski/magicstates
  17. V. Kliuchnikov, K. Lauter, R. Minko, A. Paetznick, and C. Petit, “Shorter quantum circuits via single-qubit gate approximation,” Quantum, vol. 7, p. 1208, Dec. 2023. [Online]. Available: http://dx.doi.org/10.22331/q-2023-12-18-1208
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com