Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ViFu: Multiple 360$^\circ$ Objects Reconstruction with Clean Background via Visible Part Fusion (2404.09426v1)

Published 15 Apr 2024 in cs.CV

Abstract: In this paper, we propose a method to segment and recover a static, clean background and multiple 360$\circ$ objects from observations of scenes at different timestamps. Recent works have used neural radiance fields to model 3D scenes and improved the quality of novel view synthesis, while few studies have focused on modeling the invisible or occluded parts of the training images. These under-reconstruction parts constrain both scene editing and rendering view selection, thereby limiting their utility for synthetic data generation for downstream tasks. Our basic idea is that, by observing the same set of objects in various arrangement, so that parts that are invisible in one scene may become visible in others. By fusing the visible parts from each scene, occlusion-free rendering of both background and foreground objects can be achieved. We decompose the multi-scene fusion task into two main components: (1) objects/background segmentation and alignment, where we leverage point cloud-based methods tailored to our novel problem formulation; (2) radiance fields fusion, where we introduce visibility field to quantify the visible information of radiance fields, and propose visibility-aware rendering for the fusion of series of scenes, ultimately obtaining clean background and 360$\circ$ object rendering. Comprehensive experiments were conducted on synthetic and real datasets, and the results demonstrate the effectiveness of our method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly easy synthesis for instance detection,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2017.
  2. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from simulation to the real world,” in IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2017.
  3. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in European Conference on Computer Vision, 2020.
  4. T. Xu and T. Harada, “Deforming radiance fields with cages,” in European Conference on Computer Vision (ECCV), 2022.
  5. Y.-J. Yuan, Y. tian Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao, “Nerf-editing: Geometry editing of neural radiance fields,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  6. J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  7. J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view selection for unstructured multi-view stereo,” in European Conference on Computer Vision (ECCV), 2016.
  8. H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
  9. S. Liu, T. Li, W. Chen, and H. Li, “Soft rasterizer: A differentiable renderer for image-based 3d reasoning,” IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  10. E. Insafutdinov and A. Dosovitskiy, “Unsupervised learning of shape and pose with differentiable point clouds,” NeurIPS, 2018.
  11. L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt, “Neural sparse voxel fields,” NeurIPS, 2020.
  12. V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation networks: Continuous 3d-structure-aware neural scene representations,” in Advances in Neural Information Processing Systems, 2019.
  13. L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman, “Multiview neural surface reconstruction by disentangling geometry and appearance,” Advances in Neural Information Processing Systems, 2020.
  14. A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa, “Plenoxels: Radiance fields without neural networks,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  15. T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM Transactions on Graphics (TOG), 2022.
  16. D. Verbin, P. Hedman, B. Mildenhall, T. E. Zickler, J. T. Barron, and P. P. Srinivasan, “Ref-nerf: Structured view-dependent appearance for neural radiance fields,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  17. A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-nerf: Neural radiance fields for dynamic scenes,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  18. K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radiance fields,” IEEE/CVF International Conference on Computer Vision (ICCV), 2020.
  19. K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Analyzing and improving neural radiance fields,” arXiv preprint arXiv:2010.07492, 2020.
  20. M. Guo, A. Fathi, J. Wu, and T. Funkhouser, “Object-centric neural scene rendering,” arXiv preprint arXiv:2012.08503, 2020.
  21. M. Niemeyer and A. Geiger, “Giraffe: Representing scenes as compositional generative neural feature fields,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  22. J. Zhang, X. Liu, X. Ye, F. Zhao, Y. Zhang, M. Wu, Y. Zhang, L. Xu, and J. Yu, “Editable free-viewpoint video using a layered neural representation,” ACM Transactions on Graphics (TOG), 2021.
  23. Q. Wu, X. Liu, Y. Chen, K. Li, C. Zheng, J. Cai, and J. Zheng, “Object-compositional neural implicit surfaces,” in European Conference on Computer Vision, 2022.
  24. S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison, “In-place scene labelling and understanding with implicit scene representation,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  25. C. Wang, M. Chai, M. He, D. Chen, and J. Liao, “Clip-nerf: Text-and-image driven manipulation of neural radiance fields,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  26. S. Liu, X. Zhang, Z. Zhang, R. Zhang, J.-Y. Zhu, and B. C. Russell, “Editing conditional radiance fields,” IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  27. C. Bao, Y. Zhang, B. Yang, T. Fan, Z. Yang, H. Bao, G. Zhang, and Z. Cui, “Sine: Semantic-driven image-based nerf editing with prior-guided editing field,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  28. W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface construction algorithm,” ACM siggraph computer graphics, 1987.
  29. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering clusters in large spatial databases with noise.” in kdd, 1996.
  30. H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly, 1955.
  31. L. Downs, A. Francis, N. Koenig, B. Kinman, R. M. Hickman, K. Reymann, T. B. McHugh, and V. Vanhoucke, “Google scanned objects: A high-quality dataset of 3d scanned household items,” IEEE International Conference on Robotics and Automation (ICRA), 2022.
  32. B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb object and model set: Towards common benchmarks for manipulation research,” in international conference on advanced robotics (ICAR), 2015.
  33. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM, 1981.
  34. S. M. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 2001.
  35. R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d registration,” IEEE International Conference on Robotics and Automation (ICRA), 2009.
  36. K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987.
  37. Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data processing,” ArXiv, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tianhan Xu (7 papers)
  2. Takuya Ikeda (22 papers)
  3. Koichi Nishiwaki (12 papers)

Summary

We haven't generated a summary for this paper yet.