Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Distributed Scalable Cross-chain State Channel Scheme Based on Recursive State Synchronization (2404.09408v1)

Published 15 Apr 2024 in cs.NI

Abstract: As cross-chain technology continues to advance, the scale of cross-chain transactions is experiencing significant expansion. To improve scalability, researchers have turned to the study of cross-chain state channels. However, most of the existing schemes rely on trusted parties to support channel operations. To address this issue, we present Interpipe: a distributed cross-chain state channel scheme. Specifically, we propose a real-time cross-chain synchronization scheme to ensure consistent operations between two blockchains to a cross-chain state channel. Moreover, we propose a batch transaction proof scheme based on recursive SNARK to meet the cross-chain verification needs of large-scale users. Based on the above designs, Interpipe offers protocols for opening, updating, closing, and disputing operations to cross-chain state channels. Security analysis shows that Interpipe has consistency and resistance, and experimental results demonstrate that a cross-chain state channel can be nearly as efficient as an existing intra-chain state channel.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business review, 2008.
  2. D. D. F. Maesa and P. Mori, “Blockchain 3.0 applications survey,” Journal of Parallel and Distributed Computing (JPDC), vol. 138, pp. 99–114, 2020.
  3. G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
  4. M. Mettler, “Blockchain technology in healthcare: The revolution starts here,” in Proceedings of the 18th international conference on e-health networking, applications and services (Healthcom), 2016, pp. 1–3.
  5. M. M. Queiroz, R. Telles, and S. H. Bonilla, “Blockchain and supply chain management integration: a systematic review of the literature,” Supply chain management: An international journal, vol. 25, pp. 241–254, 2020.
  6. M. Taghavi, J. Bentahar, H. Otrok, and K. Bakhtiyari, “A blockchain-based model for cloud service quality monitoring,” IEEE Transactions on Services Computing (TSC), vol. 13, pp. 276–288, 2019.
  7. V. Buterin, “Chain interoperability,” R3 Research, Tech. Rep., 2016. [Online]. Available: https://allquantor.at/blockchainbib/pdf/buterin2016chain.pdf
  8. A. Aspris, S. Foley, J. Svec, and L. Wang, “Decentralized exchanges: The “wild west” of cryptocurrency trading,” International Review of Financial Analysis, vol. 77, p. 101845, 2021.
  9. M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018 ACM symposium on principles of distributed computing (PODC), 2018, pp. 245–254.
  10. I. Tsabary, M. Yechieli, A. Manuskin, and I. Eyal, “Mad-htlc: because htlc is crazy-cheap to attack,” in Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), 2021, pp. 1230–1248.
  11. A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations with pegged sidechains,” Blockstream, Tech. Rep., 2014. [Online]. Available: http://kevinriggen.com/files/sidechains.pdf
  12. “Btc relay,” Github, Tech. Rep., 2017. [Online]. Available: https://github.com/ethereum/btcrelay
  13. A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knottenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed assets,” in Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 193–210.
  14. T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh, and D. Song, “zkbridge: Trustless cross-chain bridges made practical,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2022, pp. 3003–3017.
  15. J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini, F. Lama, H. K. Alper, X. Luo, F. Shirazi, A. Stewart et al., “Overview of polkadot and its design considerations,” arXiv preprint, 2020.
  16. J. Kwon and E. Buchman, “Cosmos whitepaper,” Cosmos Network, Tech. Rep., 2020. [Online]. Available: https://v1.cosmos.network/resources/whitepaper
  17. X. Liang, J. Chen, and D. Ruiying, “Xpull: A relay-based blockchain intercommunication framework achieving cross-chain state pulling,” Chinese Journal of Electronics, vol. 33, pp. 1–14, 2023.
  18. F. Li, S. Wei, B. Jiang, N. Liu, J. Louey, S. Chen, A. Hoo, M. Zheng, J. Qi, and L. Lyu, “Global crypto industry overview and trends,” Huobi Research, Tech. Rep., 2022. [Online]. Available: https://research.huobi.com/#/ArticleDetails?id=356
  19. J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain instant payments,” Lightning Network, Tech. Rep., 2016. [Online]. Available: https://lightning.network/lightning-network-paper.pdf
  20. G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi, “Concurrency and privacy with payment-channel networks,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017, pp. 455–471.
  21. C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-channel updates with constant collateral in bitcoin-compatible payment-channel networks,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2019, pp. 801–815.
  22. L. Aumayr, K. Abbaszadeh, and M. Maffei, “Thora: Atomic and privacy-preserving multi-channel updates,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2022, pp. 165–178.
  23. L. Aumayr, S. A. Thyagarajan, G. Malavolta, P. Moreno-Sanchez, and M. Maffei, “Sleepy channels: Bi-directional payment channels without watchtowers,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2022, pp. 179–192.
  24. N. Papadis and L. Tassiulas, “Payment channel networks: Single-hop scheduling for throughput maximization,” in Proceedings of the 2022 IEEE Conference on Computer Communications (INFOCOM), 2022, pp. 900–909.
  25. S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual payment hubs over cryptocurrencies,” in Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 106–123.
  26. S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková, “Multi-party virtual state channels,” in Proceedings of the Annual International Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT), 2019, pp. 625–656.
  27. L. Aumayr, M. Maffei, O. Ersoy, A. Erwig, S. Faust, S. Riahi, K. Hostáková, and P. Moreno-Sanchez, “Bitcoin-compatible virtual channels,” in Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), 2021, pp. 901–918.
  28. X. Jia, Z. Yu, J. Shao, R. Lu, G. Wei, and Z. Liu, “Cross-chain virtual payment channels,” IEEE Transactions on Information Forensics and Security (TIFS), vol. 18, pp. 3401–3413, 2023.
  29. Y. Guo, M. Xu, D. Yu, Y. Yu, R. Ranjan, and X. Cheng, “Cross-channel: Scalable off-chain channels supporting fair and atomic cross-chain operations,” IEEE Transactions on Computers (TC), vol. 72, pp. 3231–3244, 2023.
  30. S. Dziembowski, S. Faust, and K. Hostáková, “General state channel networks,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2018, pp. 949–966.
  31. J. Chen, X. Chen, K. He, R. Du, W. Chen, and Y. Xiang, “Delia: Distributed efficient log integrity audit based on hierarchal multi-party state channel,” IEEE Transactions on Dependable and Secure Computing (TDSC), vol. 19, pp. 3286–3300, 2021.
  32. F. Zhang, S. Guo, X. Qiu, S. Xu, F. Qi, and Z. Wang, “Federated learning meets blockchain: State channel based distributed data sharing trust supervision mechanism,” IEEE Internet of Things Journal (IOT), vol. 10, pp. 12 066–12 076, 2021.
  33. M.-H. Jeong and S.-K. Kim, “Video streaming based on blockchain state channel with iot camera,” Journal of Web Engineering (JWE), vol. 21, pp. 661–676, 2022.
  34. R. C. Merkle, “A digital signature based on a conventional encryption function,” in Proceedings of the Conference on the theory and application of cryptographic techniques (CRYPTO), 1987, pp. 369–378.
  35. J. Benaloh and M. De Mare, “One-way accumulators: A decentralized alternative to digital signatures,” in Proceedings of the Workshop on the Theory and Application of of Cryptographic Techniques (EUROCRYPT), 1993, pp. 274–285.
  36. N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-stop signature schemes without trees,” in Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1997, pp. 480–494.
  37. J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to efficient revocation of anonymous credentials,” in Proceedings of the Annual International Cryptology Conference (CRYPTO), 2002, pp. 61–76.
  38. D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumulators with applications to iops and stateless blockchains,” in Proceedings of the Annual International Cryptology Conference (CRYPTO), 2019, pp. 561–586.
  39. I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous distributed e-cash from bitcoin,” in Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP), 2013, pp. 397–411.
  40. E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,” in Proceedings of the 2014 IEEE Symposium on Security and Privacy (SP), 2014, pp. 459–474.
  41. A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper–reconfiguration-friendly random beacons with quadratic communication,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021, pp. 3502–3524.
  42. A. Kothapalli, S. Setty, and I. Tzialla, “Nova: Recursive zero-knowledge arguments from folding schemes,” in Proceedings of the Annual International Cryptology Conference (CRYPTO), 2022, pp. 359–388.
  43. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun, “On the security and performance of proof of work blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016, pp. 3–16.
  44. A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-stake blockchain protocol,” in Proceedings of the Annual International Cryptology Conference (CRYPTO), 2017, pp. 357–388.
  45. J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2015, pp. 281–310.
  46. D. Kraft, “Difficulty control for blockchain-based consensus systems,” Peer-to-peer Networking and Applications (PPNA), vol. 9, pp. 397–413, 2016.
  47. “Drand-a distributed randomness beacon daemon,” DEDIS organization, Tech. Rep., 2023. [Online]. Available: https://github.com/drand/drand

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com