Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Near Field Uplink Communication and Localization Using Message Passing-Based Sparse Bayesian Learning (2404.09201v1)

Published 14 Apr 2024 in cs.IT and math.IT

Abstract: This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal detection and localization as a problem of recovering signals with a sparse pattern. To solve the problem, we develop a message passing based sparse Bayesian learning (SBL) algorithm, where multiple unitary approximate message passing (UAMP)-based sparse signal estimators work jointly to recover the sparse signals with low complexity. Simulation results demonstrate the effectiveness of the proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field mimo communications for 6g: Fundamentals, challenges, potentials, and future directions,” IEEE Communications Magazine, vol. 61, no. 1, pp. 40–46, 2023.
  2. A. Guerra, F. Guidi, and Dardari., “Near-Field Tracking With Large Antenna Arrays: Fundamental Limits and Practical Algorithms,” IEEE Transactions on Signal Processing, vol. 69, pp. 5723–5738, 2021.
  3. Y. Lu and L. Dai, “Near-field channel estimation in mixed los/nlos environments for extremely large-scale mimo systems,” IEEE Transactions on Communications, vol. 71, no. 6, pp. 3694–3707, 2023.
  4. S. Hu, M. C. Ilter, and H. Wang, “Near-field beamforming for large intelligent surfaces,” in 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022, pp. 1367–1373.
  5. X. Wei and L. Dai, “Channel estimation for extremely large-scale massive mimo: Far-field, near-field, or hybrid-field?” IEEE Communications Letters, vol. 26, no. 1, pp. 177–181, 2022.
  6. Z. Wang, X. Mu, and Y. Liu, “Near-field integrated sensing and communications,” IEEE Communications Letters, vol. 27, no. 8, pp. 2048–2052, 2023.
  7. X. Chen, Z. Feng, Z. Wei, J. A. Zhang, X. Yuan, and P. Zhang, “Concurrent Downlink and Uplink Joint Communication and Sensing for 6G Networks,” IEEE Transactions on Vehicular Technology, vol. 72, no. 6, pp. 8175–8180, 2023.
  8. X. Chen, Z. Feng, Z. Wei, X. Yuan, P. Zhang, J. Andrew Zhang, and H. Yang, “Multiple Signal Classification Based Joint Communication and Sensing System,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  9. R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.
  10. B. Friedlander, “Localization of Signals in the Near-Field of an Antenna Array,” IEEE Transactions on Signal Processing, vol. 67, no. 15, pp. 3885–3893, 2019.
  11. E. Bjornson, O. T. Demir, and L. Sanguinetti, “A Primer on Near-Field Beamforming for Arrays and Reconfigurable Intelligent Surfaces,” in 2021 55th Asilomar Conference on Signals, Systems, and Computers, 2021, pp. 105–112.
  12. H. Lu and Y. Zeng, “Communicating With Extremely Large-Scale Array/Surface: Unified Modeling and Performance Analysis,” IEEE Transactions on Wireless Communications, vol. 21, no. 6, pp. 4039–4053, 2022.
  13. O. Rinchi, A. Elzanaty, and M.-S. Alouini, “Compressive Near-Field Localization for Multipath RIS-Aided Environments,” IEEE Communications Letters, vol. 26, no. 6, pp. 1268–1272, 2022.
  14. Q. Guo and J. Xi, “Approximate Message Passing with Unitary Transformation,” CoRR, vol. abs/1504.04799, 2015. [Online]. Available: http://arxiv.org/abs/1504.04799
  15. Z. Zheng, M. Fu, W.-Q. Wang, S. Zhang, and Y. Liao, “Localization of mixed near-field and far-field sources using symmetric double-nested arrays,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 7059–7070, 2019.
  16. S. J. J. W. Yijin Pan, Cunhua Pan, “Joint Channel Estimation and Localization in the Near Field of RIS Enabled mmWave/subTHz Communications,” CoRR, vol. abs/2208.11343, 2016. [Online]. Available: https://arxiv.org/abs/2208.11343
  17. M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,” Journal of Machine Learning Research, vol. 1, no. 3, pp. 211–244, 2001.
  18. C. Zhang, Z. Yuan, Z. Wang, and Q. Guo, “Low complexity sparse Bayesian learning using combined belief propagation and mean field with a stretched factor graph,” Signal Processing, vol. 131, pp. 344–349, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165168416302134
  19. M. Luo, Q. Guo, M. Jin, Y. C. Eldar, D. Huang, and X. Meng, “Unitary Approximate Message Passing for Sparse Bayesian Learning,” IEEE Transactions on Signal Processing, vol. 69, pp. 6023–6039, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com