2000 character limit reached
Equivalence of regular spinor fields (2404.09013v2)
Published 13 Apr 2024 in hep-th
Abstract: In the Lounesto classification, there are three types of regular spinors. They are classified by the condition that at least one of the scalar or pseudo scalar norms are non-vanishing. The Dirac spinors are regular spinors because their scalar and pseudo scalar norms are non-zero and zero respectively. We construct local and Lorentz-covariant fermionic fields from all three classes of regular spinors. By computing the invariants and bilinear covariants of the regular spinor fields, we show that they are physically equivalent to the Dirac fields in the sense that whatever interactions one writes down using the regular spinor fields, they can always be expressed in terms of the Dirac fields.
- \NameDirac P. A. M. \REVIEWProc. Roy. Soc. Lond. A1171928610.
- \NameAhluwalia D. V. Grumiller D. \REVIEWJCAP05072005012.
- \NameAhluwalia D. V. Grumiller D. \REVIEWPhys. Rev.D722005067701.
- \Nameda Rocha R. Rodrigues, Jr. W. A. \REVIEWMod. Phys. Lett. A21200665.
- \NameLounesto P. \BookClifford algebras and spinors Vol. 286 2001.
- \NameHoff da Silva J. M. da Rocha R. \REVIEWPhys. Lett. B71820131519.
- \NameCavalcanti R. T. \REVIEWInt. J. Mod. Phys. D2320141444002.
- \NameBonora L., de Brito K. P. S. da Rocha R. \REVIEWJHEP022015069.
- \NameFabbri L. da Rocha R. \REVIEWPhys. Lett. B7802018427.
- \NameHoff da Silva J. M. Cavalcanti R. T. \REVIEWMod. Phys. Lett. A3220171730032.
- \NameLee C.-Y. \REVIEWEur. Phys. J. C81202190.
- \NameArcodía M. R. A., Bellini M. da Rocha R. a. \REVIEWEur. Phys. J. C792019260.
- \NameFabbri L. Rogerio R. J. B. \REVIEWEur. Phys. J. C802020880.
- \NameRogerio R. J. B. \REVIEWMod. Phys. Lett. A3620212150093.
- \NameRogerio R. J. B. Coronado Villalobos C. H. \REVIEWPhys. Lett. A4982024129348.
- \NameAhluwalia D. V., da Silva J. M. H. Lee C.-Y. \REVIEWNucl. Phys. B9872023116092.
- \NameWigner E. P. \REVIEWAnnals Math.401939149.
- \NameWeinberg S. \BookThe Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press) 2005.