Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Speed Interception Multicopter Control by Image-based Visual Servoing (2404.08296v1)

Published 12 Apr 2024 in cs.RO

Abstract: In recent years, reports of illegal drones threatening public safety have increased. For the invasion of fully autonomous drones, traditional methods such as radio frequency interference and GPS shielding may fail. This paper proposes a scheme that uses an autonomous multicopter with a strapdown camera to intercept a maneuvering intruder UAV. The interceptor multicopter can autonomously detect and intercept intruders moving at high speed in the air. The strapdown camera avoids the complex mechanical structure of the electro-optical pod, making the interceptor multicopter compact. However, the coupling of the camera and multicopter motion makes interception tasks difficult. To solve this problem, an Image-Based Visual Servoing (IBVS) controller is proposed to make the interception fast and accurate. Then, in response to the time delay of sensor imaging and image processing relative to attitude changes in high-speed scenarios, a Delayed Kalman Filter (DKF) observer is generalized to predict the current image position and increase the update frequency. Finally, Hardware-in-the-Loop (HITL) simulations and outdoor flight experiments verify that this method has a high interception accuracy and success rate. In the flight experiments, a high-speed interception is achieved with a terminal speed of 20 m/s.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Lee and H. Son, “Antisway control of a multirotor with cable-suspended payload,” IEEE Transactions on Control Systems Technology, vol. 29, no. 6, pp. 2630–2638, 2021.
  2. D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466, 2015.
  3. M. Ritchie, F. Fioranelli, and H. Borrion, “Micro UAV crime prevention: Can we help Princess Leia?” in Crime Prevention in the 21st Century.   Springer, 2017, pp. 359–376.
  4. X. Shi, C. Yang, W. Xie, C. Liang, Z. Shi, and J. Chen, “Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges,” IEEE Communications Magazine, vol. 56, no. 4, pp. 68–74, 2018.
  5. J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim, “Tractor beam: Safe-hijacking of consumer drones with adaptive GPS spoofing,” ACM Transactions on Privacy and Security, vol. 22, no. 2, pp. 1–26, 2019.
  6. K. Pärlin, M. M. Alam, and Y. Le Moullec, “Jamming of UAV remote control systems using software defined radio,” in 2018 International Conference on Military Communications and Information Systems (ICMCIS).   IEEE, 2018, pp. 1–6.
  7. D. Dynamics, “Dronecatcher,” www.dronecatcher.nl, 2021.
  8. M. Z. Chaari and S. Al-Maadeed, “Testing the efficiency of laser technology to destroy the rogue drones,” Security and Defence Quarterly, vol. 32, no. 5, pp. 31–38, 2020.
  9. Y. Chen and N. O. Pérez-Arancibia, “Controller synthesis and performance optimization for aerobatic quadrotor flight,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2204–2219, 2020.
  10. P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone racing,” Autonomous Robots, vol. 46, no. 1, pp. 307–320, 2022.
  11. K. Yang and Q. Quan, “An autonomous intercept drone with image-based visual servo,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 2230–2236.
  12. Y. Stasinchuk, M. Vrba, M. Petrlík, T. Báča, V. Spurnỳ, D. Hert, D. Žaitlík, T. Nascimento, and M. Saska, “A multi-UAV system for detection and elimination of multiple targets,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 555–561.
  13. M. Vrba, Y. Stasinchuk, T. Báča, V. Spurnỳ, M. Petrlík, D. Heřt, D. Žaitlík, and M. Saska, “Autonomous capture of agile flying objects using UAVs: The MBZIRC 2020 challenge,” Robotics and Autonomous Systems, vol. 149, p. 103970, 2022.
  14. H. Tao, D. Lin, S. He, T. Song, and R. Jin, “Optimal terminal-velocity-control guidance for intercepting non-cooperative maneuvering quadcopter,” Journal of Field Robotics, vol. 39, no. 4, pp. 457–472, 2022.
  15. A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza, “Deep drone racing: From simulation to reality with domain randomization,” IEEE Transactions on Robotics, vol. 36, no. 1, pp. 1–14, 2020.
  16. J. Fu, Y. Song, Y. Wu, F. Yu, and D. Scaramuzza, “Learning deep sensorimotor policies for vision-based autonomous drone racing,” arXiv preprint arXiv:2210.14985, 2022.
  17. J. Li, Z. Ning, S. He, C.-H. Lee, and S. Zhao, “Three-dimensional bearing-only target following via observability-enhanced helical guidance,” IEEE Transactions on Robotics, vol. 39, no. 2, pp. 1509–1526, 2023.
  18. D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka, Y. Song, G. Cioffi, E. Kaufmann, and D. Scaramuzza, “Autonomous drone racing: A survey,” arXiv e-prints, pp. arXiv–2301, 2023.
  19. W. Zhao, H. Liu, F. L. Lewis, K. P. Valavanis, and X. Wang, “Robust visual servoing control for ground target tracking of quadrotors,” IEEE Transactions on Control Systems Technology, vol. 28, no. 5, pp. 1980–1987, 2020.
  20. H. Xie, A. F. Lynch, K. H. Low, and S. Mao, “Adaptive output-feedback image-based visual servoing for quadrotor unmanned aerial vehicles,” IEEE Transactions on Control Systems Technology, vol. 28, no. 3, pp. 1034–1041, 2020.
  21. G. Wang, J. Qin, Q. Liu, Q. Ma, and C. Zhang, “Image-based visual servoing of quadrotors to arbitrary flight targets,” IEEE Robotics and Automation Letters, vol. 8, no. 4, pp. 2022–2029, 2023.
  22. J. M. Pak, C. K. Ahn, P. Shi, Y. S. Shmaliy, and M. T. Lim, “Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5182–5191, 2017.
  23. R. P. Guan, B. Ristic, L. Wang, and R. Evans, “Monte Carlo localisation of a mobile robot using a Doppler-Azimuth radar,” Automatica, vol. 97, pp. 161–166, 2018.
  24. H. Zhu, J. Mi, Y. Li, K.-V. Yuen, and H. Leung, “VB-Kalman based localization for connected vehicles with delayed and lost measurements: Theory and experiments,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 3, pp. 1370–1378, 2022.
  25. K. Gamagedara, T. Lee, and M. Snyder, “Quadrotor state estimation with IMU and delayed real-time kinematic GPS,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 5, pp. 2661–2673, 2021.
  26. J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, “Nonlinear feedback control of quadrotors exploiting first-order drag effects,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8189–8195, 2017, 20th IFAC World Congress.
  27. Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza, “Reaching the limit in autonomous racing: Optimal control versus reinforcement learning,” Science Robotics, vol. 8, no. 82, p. eadg1462, 2023.
  28. F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic approaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.
  29. Y. Yu, S. Yang, M. Wang, C. Li, and Z. Li, “High performance full attitude control of a quadrotor on SO(3),” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 1698–1703.
  30. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor UAV on SE(3),” in 49th IEEE Conference on Decision and Control (CDC).   IEEE, 2010, pp. 5420–5425.
  31. R. Fu, Q. Quan, M. Li, and K.-Y. Cai, “Practical distributed control for cooperative multicopters in structured free flight concepts,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4203–4216, 2023.
  32. X. Dai, C. Ke, Q. Quan, and K.-Y. Cai, “RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations,” Aerospace Science and Technology, vol. 114, p. 106727, 2021.
  33. D. Shnidman, “Efficient computation of the circular error probability (CEP) integral,” IEEE Transactions on Automatic Control, vol. 40, no. 8, pp. 1472–1474, 1995.
  34. K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.
  35. K. M. Roscoe, “Equivalency between strapdown inertial navigation coning and sculling integrals/algorithms,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 201–205, 2001.
Citations (1)

Summary

We haven't generated a summary for this paper yet.