Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Complexity enriched dynamical phases for fermions on graphs (2404.08055v2)

Published 11 Apr 2024 in quant-ph

Abstract: Dynamical quantum phase transitions, encompassing phenomena like many-body localization transitions and measurement-induced phase transitions, are often characterized and identified through the analysis of quantum entanglement. Here, we highlight that the dynamical phases defined by entanglement are further enriched by complexity. We investigate both the entanglement and Krylov complexity for fermions on regular graphs, which can be implemented by systems like $6$Li atoms confined by optical tweezers. Our investigations unveil that while entanglement follows volume laws on both types of regular graphs with degree $d = 2$ and $d = 3$, the Krylov complexity exhibits distinctive behaviors. We analyze both free fermions and interacting fermions models. In the absence of interaction, both numerical results and theoretical analysis confirm that the dimension of the Krylov space scales as $D\sim N$ for regular graphs of degree $d = 2$ with $N$ sites, and we have $D\sim N2$ for $d = 3$. The qualitative distinction also persists in interacting fermions on regular graphs. For interacting fermions, our theoretical analyses find the dimension scales as $D\sim 4{N\alpha}$ for regular graphs of $d = 2$ with $0.38\leq\alpha\leq0.59$, whereas it scales as $D\sim 4N$ for $d = 3$. The distinction in the complexity of quantum dynamics for fermions on graphs with different connectivity can be probed in experiments by measuring the out-of-time-order correlators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. M. Heyl, Dynamical quantum phase transitions: a review, Reports on Progress in Physics 81, 054001 (2018).
  2. A. A. Zvyagin, Dynamical quantum phase transitions (Review Article), Low Temperature Physics 42, 971 (2016), https://pubs.aip.org/aip/ltp/article-pdf/42/11/971/16095119/971_1_online.pdf .
  3. M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model, Phys. Rev. Lett. 110, 135704 (2013).
  4. M. Heyl, Dynamical quantum phase transitions in systems with broken-symmetry phases, Phys. Rev. Lett. 113, 205701 (2014).
  5. R. Vosk and E. Altman, Dynamical quantum phase transitions in random spin chains, Phys. Rev. Lett. 112, 217204 (2014).
  6. M. Heyl, Scaling and universality at dynamical quantum phase transitions, Phys. Rev. Lett. 115, 140602 (2015a).
  7. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015), https://doi.org/10.1146/annurev-conmatphys-031214-014726 .
  8. A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411 (2010).
  9. F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, Comptes Rendus Physique 19, 498 (2018).
  10. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
  11. M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020).
  12. S. Vajna and B. Dóra, Topological classification of dynamical phase transitions, Phys. Rev. B 91, 155127 (2015).
  13. Z. Huang and A. V. Balatsky, Dynamical quantum phase transitions: Role of topological nodes in wave function overlaps, Phys. Rev. Lett. 117, 086802 (2016).
  14. J. C. Budich and M. Heyl, Dynamical topological order parameters far from equilibrium, Phys. Rev. B 93, 085416 (2016).
  15. U. Bhattacharya and A. Dutta, Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems, Phys. Rev. B 96, 014302 (2017).
  16. U. Bhattacharya, S. Bandyopadhyay, and A. Dutta, Mixed state dynamical quantum phase transitions, Phys. Rev. B 96, 180303 (2017).
  17. M. Heyl, Scaling and universality at dynamical quantum phase transitions, Phys. Rev. Lett. 115, 140602 (2015b).
  18. C. Karrasch and D. Schuricht, Dynamical quantum phase transitions in the quantum potts chain, Phys. Rev. B 95, 075143 (2017).
  19. Measurement-induced entanglement and teleportation on a noisy quantum processor, Nature 622, 481 (2023).
  20. A. Browaeys and T. Lahaye, Many-body physics with individually controlled rydberg atoms, Nature Physics 16, 132 (2020).
  21. F. B. Trigueros and C.-J. Lin, Krylov complexity of many-body localization: Operator localization in Krylov basis, SciPost Phys. 13, 037 (2022).
  22. A. Dymarsky and M. Smolkin, Krylov complexity in conformal field theory, Phys. Rev. D 104, L081702 (2021).
  23. A. Kundu, V. Malvimat, and R. Sinha, State dependence of krylov complexity in 2d cfts, Journal of High Energy Physics 2023, 1 (2023).
  24. C. Liu, H. Tang, and H. Zhai, Krylov complexity in open quantum systems, Phys. Rev. Res. 5, 033085 (2023).
  25. K. Hashimoto, K. Murata, and R. Yoshii, Out-of-time-order correlators in quantum mechanics, Journal of High Energy Physics 2017, 1 (2017).
  26. B. Swingle, Unscrambling the physics of out-of-time-order correlators, Nature Physics 14, 988 (2018).
  27. I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
  28. A. Bhattacharyya, D. Ghosh, and P. Nandi, Operator growth and krylov complexity in bose-hubbard model, Journal of High Energy Physics 2023, 1 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com