Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive-FAR:Interactive, Fast and Adaptable Routing for Navigation Among Movable Obstacles in Complex Unknown Environments (2404.07447v1)

Published 11 Apr 2024 in cs.RO

Abstract: This paper introduces a real-time algorithm for navigating complex unknown environments cluttered with movable obstacles. Our algorithm achieves fast, adaptable routing by actively attempting to manipulate obstacles during path planning and adjusting the global plan from sensor feedback. The main contributions include an improved dynamic Directed Visibility Graph (DV-graph) for rapid global path searching, a real-time interaction planning method that adapts online from new sensory perceptions, and a comprehensive framework designed for interactive navigation in complex unknown or partially known environments. Our algorithm is capable of replanning the global path in several milliseconds. It can also attempt to move obstacles, update their affordances, and adapt strategies accordingly. Extensive experiments validate that our algorithm reduces the travel time by 33%, achieves up to 49% higher path efficiency, and runs faster than traditional methods by orders of magnitude in complex environments. It has been demonstrated to be the most efficient solution in terms of speed and efficiency for interactive navigation in environments of such complexity. We also open-source our code in the docker demo to facilitate future research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C. Cao, H. Zhu, H. Choset, and J. Zhang, “Tare: A hierarchical framework for efficiently exploring complex 3d environments.” in Robotics: Science and Systems, vol. 5, 2021.
  2. A.-H. Shahidzadeh, S. J. Yoo, P. Mantripragada, C. D. Singh, C. Fermüller, and Y. Aloimonos, “Actexplore: Active tactile exploration on unknown objects,” arXiv preprint arXiv:2310.08745, 2023.
  3. F. Farahnakian, L. Koivunen, T. Mäkilä, and J. Heikkonen, “Towards autonomous industrial warehouse inspection,” in 2021 26th International Conference on Automation and Computing (ICAC).   IEEE, 2021, pp. 1–6.
  4. X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu et al., “Swarm of micro flying robots in the wild,” Science Robotics, vol. 7, no. 66, p. eabm5954, 2022.
  5. G. Wilfong, “Motion planning in the presence of movable obstacles,” in Proceedings of the fourth annual symposium on Computational geometry, 1988, pp. 279–288.
  6. M. Stilman and J. Kuffner, “Planning among movable obstacles with artificial constraints,” The International Journal of Robotics Research, vol. 27, no. 11-12, pp. 1295–1307, 2008.
  7. M. Levihn, M. Stilman, and H. Christensen, “Locally optimal navigation among movable obstacles in unknown environments,” in 2014 IEEE-RAS International Conference on Humanoid Robots.   IEEE, 2014, pp. 86–91.
  8. J. Muguira-Iturralde, A. Curtis, Y. Du, L. P. Kaelbling, and T. Lozano-Pérez, “Visibility-aware navigation among movable obstacles,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 10 083–10 089.
  9. F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev, R. Martín-Martín, and S. Savarese, “Interactive gibson benchmark: A benchmark for interactive navigation in cluttered environments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 713–720, 2020.
  10. K.-H. Zeng, L. Weihs, A. Farhadi, and R. Mottaghi, “Pushing it out of the way: Interactive visual navigation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9868–9877.
  11. S. Suzuki et al., “Topological structural analysis of digitized binary images by border following,” Computer vision, graphics, and image processing, vol. 30, no. 1, pp. 32–46, 1985.
  12. D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Cartographica: the international journal for geographic information and geovisualization, vol. 10, no. 2, pp. 112–122, 1973.
  13. F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang, “Far planner: Fast, attemptable route planner using dynamic visibility update,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 9–16.
  14. A. Rodriguez and M. T. Mason, “Path connectivity of the free space,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1177–1180, 2012.
  15. K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controllability, and planning,” The international journal of robotics research, vol. 15, no. 6, pp. 533–556, 1996.
  16. M. T. Mason, “Mechanics and planning of manipulator pushing operations,” The International Journal of Robotics Research, vol. 5, no. 3, pp. 53–71, 1986.
  17. F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar manipulation with convex hybrid mpc,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 247–253.
  18. N. Doshi, F. R. Hogan, and A. Rodriguez, “Hybrid differential dynamic programming for planar manipulation primitives,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 6759–6765.
  19. M. E. Houle and G. T. Toussaint, “Computing the width of a set,” in Proceedings of the first annual symposium on Computational geometry, 1985, pp. 1–7.
  20. D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for autonomous vehicles in unknown semi-structured environments,” The international journal of robotics research, vol. 29, no. 5, pp. 485–501, 2010.
  21. C. Cao, H. Zhu, F. Yang, Y. Xia, H. Choset, J. Oh, and J. Zhang, “Autonomous exploration development environment and the planning algorithms,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 8921–8928.
  22. F. Zehra, M. Javed, D. Khan, and M. Pasha, “Comparative analysis of c++ and python in terms of memory and time. 2020,” Preprints.[Google Scholar], 2020.
  23. P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On evaluation of embodied navigation agents,” arXiv preprint arXiv:1807.06757, 2018.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com