Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling recovery on function classes with a structural condition (2404.07210v2)

Published 17 Feb 2024 in math.NA, cs.NA, and math.FA

Abstract: Sampling recovery on some function classes is studied in this paper. Typically, function classes are defined by imposing smoothness conditions. It was understood in nonlinear approximation that structural conditions in the form of control of the number of big coefficients of an expansion of a function with respect to a given system of functions plays an important role. Sampling recovery on smoothness classes is an area of active research, some problems, especially in the case of mixed smoothness classes, are still open. It was discovered recently that universal sampling discretization and nonlinear sparse approximations are useful in the sampling recovery problem. This motivated us to systematically study sampling recovery on function classes with a structural condition. Some results in this direction are already known. In particular, the classes defined by conditions on coefficients with indices from the domains, which are differences of two dyadic cubes are studied in the recent author's papers. In this paper we concentrate on studying function classes defined by conditions on coefficients with indices from the domains, which are differences of two dyadic hyperbolic crosses.

Summary

We haven't generated a summary for this paper yet.