Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transcendence properties of the Artin-Hasse exponential modulo $p$ (2404.06968v1)

Published 10 Apr 2024 in math.NT and math.CO

Abstract: Let $E_p(x)$ denote the Artin-Hasse exponential and let $\overline{E}_p(x)$ denote its reduction modulo $p$ in $\mathbb{F}_p[[x]]$. In this article we study transcendence properties of $\overline{E}_p(x)$ over $\mathbb{F}_p[x]$. We give two proofs that $\overline{E}_p(x)$ is transcendental, affirmatively answering a question of Thakur. We also prove algebraic independence results: i) for $f_1,\dots,f_r \in x\mathbb{F}_p[x]$ satisfying certain linear independence properties, we show that the $\overline{E}_p(f_1), \dots, \overline{E}_p(f_r)$ are algebraically independent over $\mathbb{F}_p[x]$ and ii) we determine the algebraic relations between $\overline{E}_p(cx)$, where $c \in \mathbb{F}_p\times$. Our proof studies the higher derivatives of $\overline{E}_p(x)$ and makes use of iterative differential Galois theory.

Summary

We haven't generated a summary for this paper yet.