Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Generic Point Model for Lossless Point Cloud Attribute Compression (2404.06936v1)

Published 10 Apr 2024 in cs.CV and cs.MM

Abstract: The past several years have witnessed the emergence of learned point cloud compression (PCC) techniques. However, current learning-based lossless point cloud attribute compression (PCAC) methods either suffer from high computational complexity or deteriorated compression performance. Moreover, the significant variations in point cloud scale and sparsity encountered in real-world applications make developing an all-in-one neural model a challenging task. In this paper, we propose PoLoPCAC, an efficient and generic lossless PCAC method that achieves high compression efficiency and strong generalizability simultaneously. We formulate lossless PCAC as the task of inferring explicit distributions of attributes from group-wise autoregressive priors. A progressive random grouping strategy is first devised to efficiently resolve the point cloud into groups, and then the attributes of each group are modeled sequentially from accumulated antecedents. A locality-aware attention mechanism is utilized to exploit prior knowledge from context windows in parallel. Since our method directly operates on points, it can naturally avoids distortion caused by voxelization, and can be executed on point clouds with arbitrary scale and density. Experiments show that our method can be instantly deployed once trained on a Synthetic 2k-ShapeNet dataset while enjoying continuous bit-rate reduction over the latest G-PCCv23 on various datasets (ShapeNet, ScanNet, MVUB, 8iVFB). Meanwhile, our method reports shorter coding time than G-PCCv23 on the majority of sequences with a lightweight model size (2.6MB), which is highly attractive for practical applications. Dataset, code and trained model are available at https://github.com/I2-Multimedia-Lab/PoLoPCAC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. M. Masalkhi, E. Waisberg, J. Ong, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli, “Apple vision pro for ophthalmology and medicine,” Annals of Biomedical Engineering, pp. 1–4, 2023.
  2. S. Yang, M. Hou, and S. Li, “Three-dimensional point cloud semantic segmentation for cultural heritage: A comprehensive review,” Remote Sensing, vol. 15, no. 3, p. 548, 2023.
  3. K. Mirzaei, M. Arashpour, E. Asadi, H. Masoumi, Y. Bai, and A. Behnood, “3d point cloud data processing with machine learning for construction and infrastructure applications: A comprehensive review,” Advanced Engineering Informatics, vol. 51, p. 101501, 2022.
  4. G. Valenzise, M. Quach, D. Tian, J. Pang, and F. Dufaux, “Chapter 13 - point cloud compression,” in Immersive Video Technologies, G. Valenzise, M. Alain, E. Zerman, and C. Ozcinar, Eds.   Academic Press, 2023, pp. 357–385.
  5. J. Wang, D. Ding, Z. Li, X. Feng, C. Cao, and Z. Ma, “Sparse tensor-based multiscale representation for point cloud geometry compression,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 7, pp. 9055–9071, 2023.
  6. C. Fu, G. Li, R. Song, W. Gao, and S. Liu, “Octattention: Octree-based large-scale contexts model for point cloud compression,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 625–633.
  7. K. You and P. Gao, “Patch-based deep autoencoder for point cloud geometry compression,” in ACM Multimedia Asia, 2021, pp. 1–7.
  8. D. T. Nguyen, K. G. Nambiar, and A. Kaup, “Deep probabilistic model for lossless scalable point cloud attribute compression,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023, pp. 1–5.
  9. J. Wang and Z. Ma, “Sparse tensor-based point cloud attribute compression,” in 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR).   IEEE, 2022, pp. 59–64.
  10. X. Sheng, L. Li, D. Liu, Z. Xiong, Z. Li, and F. Wu, “Deep-pcac: An end-to-end deep lossy compression framework for point cloud attributes,” IEEE Transactions on Multimedia, vol. 24, pp. 2617–2632, 2021.
  11. R. B. Pinheiro, J.-E. Marvie, G. Valenzise, and F. Dufaux, “Nf-pcac: Normalizing flow based point cloud attribute compression,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.
  12. R. Borba Pinheiro, J.-E. Marvie, G. Valenzise, and F. Dufaux, “Reducing the complexity of normalizing flow architectures for point cloud attribute compression,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024).   Seoul, South Korea: IEEE, Apr. 2024.
  13. G. Fang, Q. Hu, H. Wang, Y. Xu, and Y. Guo, “3dac: Learning attribute compression for point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14 819–14 828.
  14. G. Fang, Q. Hu, Y. Xu, and Y. Guo, “4dac: Learning attribute compression for dynamic point clouds,” arXiv preprint arXiv:2204.11723, 2022.
  15. J. Wang, D. Ding, and Z. Ma, “Lossless point cloud attribute compression using cross-scale, cross-group, and cross-color prediction,” in 2023 Data Compression Conference (DCC).   IEEE, 2023, pp. 228–237.
  16. D. T. Nguyen and A. Kaup, “Lossless point cloud geometry and attribute compression using a learned conditional probability model,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.
  17. X. Wu, Y. Lao, L. Jiang, X. Liu, and H. Zhao, “Point transformer v2: Grouped vector attention and partition-based pooling,” in NeurIPS, 2022.
  18. Z. Li, P. Gao, H. Yuan, R. Wei, and M. Paul, “Exploiting inductive bias in transformer for point cloud classification and segmentation,” arXiv preprint arXiv:2304.14124, 2023.
  19. R. Zhang, L. Wang, Y. Wang, P. Gao, H. Li, and J. Shi, “Parameter is not all you need: Starting from non-parametric networks for 3d point cloud analysis,” arXiv preprint arXiv:2303.08134, 2023.
  20. K. W. Tesema, L. Hill, M. W. Jones, M. I. Ahmad, and G. K. Tam, “Point cloud completion: A survey,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–20, 2023.
  21. X. Li, R. Li, G. Chen, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “A rotation-invariant framework for deep point cloud analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 12, pp. 4503–4514, 2022.
  22. D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai, “An overview of ongoing point cloud compression standardization activities: Video-based (v-pcc) and geometry-based (g-pcc),” APSIPA Transactions on Signal and Information Processing, vol. 9, p. e13, 2020.
  23. W. 1, “Final call for proposals on jpeg pleno point cloud coding,” ISO/IEC 21794 (JPEG Pleno), 2022.
  24. C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski convolutional neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 3075–3084.
  25. R. L. De Queiroz and P. A. Chou, “Compression of 3d point clouds using a region-adaptive hierarchical transform,” IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3947–3956, 2016.
  26. G. P. Sandri, P. A. Chou, M. Krivokuća, and R. L. de Queiroz, “Integer alternative for the region-adaptive hierarchical transform,” IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1369–1372, 2019.
  27. E. Pavez, A. L. Souto, R. L. De Queiroz, and A. Ortega, “Multi-resolution intra-predictive coding of 3d point cloud attributes,” in 2021 IEEE International Conference on Image Processing (ICIP).   IEEE, 2021, pp. 3393–3397.
  28. Y. Xu, W. Hu, S. Wang, X. Zhang, S. Wang, S. Ma, Z. Guo, and W. Gao, “Predictive generalized graph fourier transform for attribute compression of dynamic point clouds,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 5, pp. 1968–1982, 2020.
  29. F. Song, G. Li, X. Yang, W. Gao, and T. H. Li, “Fine-grained correlation representation for graph-based point cloud attribute compression,” in 2022 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2022, pp. 1–6.
  30. F. Song, G. Li, W. Gao, and T. H. Li, “Rate-distortion optimized graph for point cloud attribute coding,” IEEE Signal Processing Letters, vol. 29, pp. 922–926, 2022.
  31. J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,” arXiv preprint arXiv:1611.01704, 2016.
  32. J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression with a scale hyperprior,” arXiv preprint arXiv:1802.01436, 2018.
  33. D. He, Y. Zheng, B. Sun, Y. Wang, and H. Qin, “Checkerboard context model for efficient learned image compression,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 771–14 780.
  34. Z. Duan, M. Lu, J. Ma, Y. Huang, Z. Ma, and F. Zhu, “Qarv: Quantization-aware resnet vae for lossy image compression,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 1, pp. 436–450, 2024.
  35. B. Isik, P. A. Chou, S. J. Hwang, N. Johnston, and G. Toderici, “Lvac: Learned volumetric attribute compression for point clouds using coordinate based networks,” Frontiers in Signal Processing, 2022.
  36. Q. Yin, Q. Ren, L. Zhao, W. Wang, and J. Chen, “Lossless point cloud attribute compression with normal-based intra prediction,” in 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB).   IEEE, 2021, pp. 1–5.
  37. L. Wei, S. Wan, F. Yang, Z. Wang et al., “Content-adaptive level of detail for lossless point cloud compression,” APSIPA Transactions on Signal and Information Processing, vol. 11, no. 1, 2022.
  38. H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 16 259–16 268.
  39. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
  40. K.-Y. Chang, K.-H. Lu, and C.-S. Chen, “Aesthetic critiques generation for photos,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 3514–3523.
  41. A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.
  42. C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou, “Microsoft voxelized upper bodies-a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m38673 M, vol. 72012, p. 2016, 2016.
  43. E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized full bodies-a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006, vol. 7, no. 8, p. 11, 2017.
  44. J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences,” in Proc. of the IEEE/CVF International Conf. on Computer Vision (ICCV), 2019.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  46. H. Malvar and G. Sullivan, “Ycocg-r: A color space with rgb reversibility and low dynamic range,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q, vol. 6, 2003.
  47. MPEG, “G-pcc test model v23,” https://github.com/MPEGGroup/mpeg-pcc-tmc13, 2023, accessed: 2023.
  48. M. D. G. C. WG 7, “Common test conditions for g-pcc,” ISO/IEC JTC1/SC29/WG11 N00106, 2021.
  49. G. Fenza, M. Gallo, V. Loia, F. Orciuoli, and E. Herrera-Viedma, “Data set quality in machine learning: consistency measure based on group decision making,” Applied Soft Computing, vol. 106, p. 107366, 2021.
  50. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  51. M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, “Pct: Point cloud transformer,” Computational Visual Media, vol. 7, pp. 187–199, 2021.
  52. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” Advances in neural information processing systems, vol. 30, 2017.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com