Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demand Private Coded Caching: the Two-File Case (2404.06884v2)

Published 10 Apr 2024 in cs.IT and math.IT

Abstract: We investigate the demand private coded caching problem, which is an $(N,K)$ coded caching problem with $N$ files, $K$ users, each equipped with a cache of size $M$, and an additional privacy constraint on user demands. We first present a new virtual-user-based achievable scheme for arbitrary number of users and files. Then, for the case of 2 files and arbitrary number of users, we derive some new converse bounds. As a result, we obtain the exact memory-rate tradeoff of the demand private coded caching problem for 2 files and 3 users. As for the case of 2 files and arbitrary number of users, the exact memory-rate tradeoff is characterized for $M\in [0,\frac{2}{K}] \cup [\frac{2(K-1)}{K+1},2]$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014.
  2. Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: improved bounds for users with small buffers,” IET Communications, vol. 10, no. 17, pp. 2315–2318, 2016. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-com.2015.1205
  3. M. M. Amiri, Q. Yang, and D. Gündüz, “Coded caching for a large number of users,” in 2016 IEEE Information Theory Workshop (ITW), 2016, pp. 171–175.
  4. M. Mohammadi Amiri and D. Gündüz, “Fundamental limits of coded caching: Improved delivery rate-cache capacity tradeoff,” IEEE Transactions on Communications, vol. 65, no. 2, pp. 806–815, 2017.
  5. Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff for caching with uncoded prefetching,” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 1281–1296, 2018.
  6. C. Tian and J. Chen, “Caching and delivery via interference elimination,” IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1548–1560, 2018.
  7. J. Gómez-Vilardebó, “Fundamental limits of caching: Improved rate-memory tradeoff with coded prefetching,” IEEE Transactions on Communications, vol. 66, no. 10, pp. 4488–4497, 2018.
  8. K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach to caching with uncoded cache placement,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1318–1332, 2020.
  9. A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of storage-rate tradeoff for caching via new outer bounds,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 1691–1695.
  10. C. Tian, “Symmetry, outer bounds, and code constructions: A computer-aided investigation on the fundamental limits of caching,” Entropy, vol. 20, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:17030295
  11. H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4388–4413, 2017.
  12. C.-Y. Wang, S. Saeedi Bidokhti, and M. Wigger, “Improved converses and gap results for coded caching,” IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 7051–7062, 2018.
  13. Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory tradeoff in cache networks within a factor of 2,” IEEE Transactions on Information Theory, vol. 65, no. 1, pp. 647–663, 2019.
  14. V. K. K. P., B. K. Rai, and T. Jacob, “Towards the optimal rate memory tradeoff in caching with coded placement,” IEEE Transactions on Information Theory, vol. 69, no. 4, pp. 2093–2112, 2023.
  15. C. Gurjarpadhye, J. Ravi, S. Kamath, B. K. Dey, and N. Karamchandani, “Fundamental limits of demand-private coded caching,” IEEE Transactions on Information Theory, vol. 68, no. 6, pp. 4106–4134, 2022.
  16. V. R. Aravind, P. K. Sarvepalli, and A. Thangaraj, “Subpacketization in coded caching with demand privacy,” in 2020 National Conference on Communications (NCC), 2020, pp. 1–6.
  17. ——, “Lifting constructions of pdas for coded caching with linear subpacketization,” IEEE Transactions on Communications, vol. 70, no. 12, pp. 7817–7829, 2022.
  18. K. Wan and G. Caire, “On coded caching with private demands,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 358–372, 2021.
  19. Q. Yan and D. Tuninetti, “Fundamental limits of caching for demand privacy against colluding users,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 192–207, 2021.
  20. K. K. Namboodiri and B. S. Rajan, “Optimal demand private coded caching for users with small buffers,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 706–711.
  21. A. Gholami, K. Wan, H. Sun, M. Ji, and G. Caire, “Coded caching with private demands and caches,” IEEE Transactions on Information Theory, pp. 1–1, 2023.
  22. K. Wan, M. Cheng, D. Liang, and G. Caire, “Multiaccess coded caching with private demands,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1390–1395.
  23. K. K. Krishnan Namboodiri and B. Sundar Rajan, “Multi-access coded caching with demand privacy,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 2280–2285.
  24. M. Chinnapadamala and B. S. Rajan, “Security and privacy in cache-aided linear function retrieval for multi-access coded caching,” in 2022 IEEE Information Theory Workshop (ITW), 2022, pp. 690–695.
  25. K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Device-to-device private caching with trusted server,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6.
  26. ——, “Novel converse for device-to-device demand-private caching with a trusted server,” in 2020 IEEE International Symposium on Information Theory (ISIT), 2020, pp. 1705–1710.
  27. ——, “On the fundamental limits of device-to-device private caching under uncoded cache placement and user collusion,” IEEE Transactions on Information Theory, vol. 68, no. 9, pp. 5701–5729, 2022.
  28. Q. Yan and D. Tuninetti, “Key superposition simultaneously achieves security and privacy in cache-aided linear function retrieval,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5250–5263, 2021.
  29. ——, “Robust, private and secure cache-aided scalar linear function retrieval from coded servers,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 968–981, 2022.
  30. Y. Ma and D. Tuninetti, “Demand privacy in hotplug caching systems,” in 2023 IEEE International Symposium on Information Theory (ISIT), 2023, pp. 424–429.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com