Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SleepPPG-Net2: Deep learning generalization for sleep staging from photoplethysmography (2404.06869v1)

Published 10 Apr 2024 in cs.LG, cs.AI, and eess.SP

Abstract: Background: Sleep staging is a fundamental component in the diagnosis of sleep disorders and the management of sleep health. Traditionally, this analysis is conducted in clinical settings and involves a time-consuming scoring procedure. Recent data-driven algorithms for sleep staging, using the photoplethysmogram (PPG) time series, have shown high performance on local test sets but lower performance on external datasets due to data drift. Methods: This study aimed to develop a generalizable deep learning model for the task of four class (wake, light, deep, and rapid eye movement (REM)) sleep staging from raw PPG physiological time-series. Six sleep datasets, totaling 2,574 patients recordings, were used. In order to create a more generalizable representation, we developed and evaluated a deep learning model called SleepPPG-Net2, which employs a multi-source domain training approach.SleepPPG-Net2 was benchmarked against two state-of-the-art models. Results: SleepPPG-Net2 showed consistently higher performance over benchmark approaches, with generalization performance (Cohen's kappa) improving by up to 19%. Performance disparities were observed in relation to age, sex, and sleep apnea severity. Conclusion: SleepPPG-Net2 sets a new standard for staging sleep from raw PPG time-series.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. R. B. Berry, R. Brooks, C. Gamaldo, S. M. Harding, R. M. Lloyd, S. F. Quan, M. T. Troester, and B. V. Vaughn, “AASM Scoring Manual Updates for 2017 (Version 2.4),” Journal of Clinical Sleep Medicine, vol. 13, no. 05, pp. 665–666, May 2017. [Online]. Available: http://jcsm.aasm.org/doi/10.5664/jcsm.6576
  2. P. H. Charlton, J. Allen, R. Bailón, S. Baker, J. A. Behar, F. Chen, G. D. Clifford, D. A. Clifton, H. J. Davies, C. Ding, X. Ding, J. Dunn, M. Elgendi, M. Ferdoushi, D. Franklin, E. Gil, M. F. Hassan, J. Hernesniemi, X. Hu, N. Ji, Y. Khan, S. Kontaxis, I. Korhonen, P. A. Kyriacou, P. Laguna, J. Lázaro, C. Lee, J. Levy, Y. Li, C. Liu, J. Liu, L. Lu, D. P. Mandic, V. Marozas, E. Mejía-Mejía, R. Mukkamala, M. Nitzan, T. Pereira, C. C. Y. Poon, J. C. Ramella-Roman, H. Saarinen, M. M. H. Shandhi, H. Shin, G. Stansby, T. Tamura, A. Vehkaoja, W. K. Wang, Y.-T. Zhang, N. Zhao, D. Zheng, and T. Zhu, “The 2023 wearable photoplethysmography roadmap,” Physiological Measurement, vol. 44, no. 11, p. 111001, Nov. 2023. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6579/acead2
  3. K. Kotzen, P. H. Charlton, S. Salabi, L. Amar, A. Landesberg, and J. A. Behar, “SleepPPG-Net: A Deep Learning Algorithm for Robust Sleep Staging From Continuous Photoplethysmography,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 2, pp. 924–932, Feb. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9965588/
  4. N. Sridhar, A. Shoeb, P. Stephens, A. Kharbouch, D. B. Shimol, J. Burkart, A. Ghoreyshi, and L. Myers, “Deep learning for automated sleep staging using instantaneous heart rate,” npj Digital Medicine, vol. 3, no. 1, p. 106, Aug. 2020. [Online]. Available: https://www.nature.com/articles/s41746-020-0291-x
  5. M. Radha, P. Fonseca, A. Moreau, M. Ross, A. Cerny, P. Anderer, X. Long, and R. M. Aarts, “A deep transfer learning approach for wearable sleep stage classification with photoplethysmography,” npj Digital Medicine, vol. 4, no. 1, p. 135, Sep. 2021. [Online]. Available: https://www.nature.com/articles/s41746-021-00510-8
  6. R. Huttunen, T. Leppänen, B. Duce, A. Oksenberg, S. Myllymaa, J. Töyräs, and H. Korkalainen, “Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography,” SLEEP, vol. 44, no. 10, p. zsab142, Oct. 2021. [Online]. Available: https://academic.oup.com/sleep/article/doi/10.1093/sleep/zsab142/6294001
  7. A. Habib, M. A. Motin, T. Penzel, M. Palaniswami, J. Yearwood, and C. Karmakar, “Performance of a Convolutional Neural Network Derived From PPG Signal in Classifying Sleep Stages,” IEEE Transactions on Biomedical Engineering, vol. 70, no. 6, pp. 1717–1728, Jun. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9940577/
  8. X. Zhao and G. Sun, “A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals,” Entropy, vol. 23, no. 1, p. 116, Jan. 2021. [Online]. Available: https://www.mdpi.com/1099-4300/23/1/116
  9. Q. Li, Q. Li, A. S. Cakmak, G. Da Poian, D. L. Bliwise, V. Vaccarino, A. J. Shah, and G. D. Clifford, “Transfer learning from ECG to PPG for improved sleep staging from wrist-worn wearables,” Physiological Measurement, vol. 42, no. 4, p. 044004, Apr. 2021. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6579/abf1b0
  10. H. Korkalainen, J. Aakko, B. Duce, S. Kainulainen, A. Leino, S. Nikkonen, I. O. Afara, S. Myllymaa, J. Töyräs, and T. Leppänen, “Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea,” Sleep, vol. 43, no. 11, p. zsaa098, Nov. 2020. [Online]. Available: https://academic.oup.com/sleep/article/doi/10.1093/sleep/zsaa098/5841624
  11. O. Walch, Y. Huang, D. Forger, and C. Goldstein, “Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device,” Sleep, vol. 42, no. 12, p. zsz180, Dec. 2019. [Online]. Available: https://academic.oup.com/sleep/article/doi/10.1093/sleep/zsz180/5549536
  12. B. M. Wulterkens, P. Fonseca, L. W. Hermans, M. Ross, A. Cerny, P. Anderer, X. Long, J. P. Van Dijk, N. Vandenbussche, S. Pillen, M. M. Van Gilst, and S. Overeem, “It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography,” Nature and Science of Sleep, vol. Volume 13, pp. 885–897, Jun. 2021. [Online]. Available: https://www.dovepress.com/it-is-all-in-the-wrist-wearable-sleep-staging-in-a-clinical-population-peer-reviewed-fulltext-article-NSS
  13. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, no. 23, Jun. 2000. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.CIR.101.23.e215
  14. M. G. Terzano, L. Parrino, A. Sherieri, R. Chervin, S. Chokroverty, C. Guilleminault, M. Hirshkowitz, M. Mahowald, H. Moldofsky, A. Rosa, R. Thomas, and A. Walters, “Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep,” Sleep Medicine, vol. 2, no. 6, pp. 537–553, Nov. 2001. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1389945701001496
  15. H. Phan, F. Andreotti, N. Cooray, O. Y. Chen, and M. De Vos, “SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 400–410, Mar. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8631195/
  16. J. Levy, D. Álvarez, F. Del Campo, and J. A. Behar, “Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry,” Nature Communications, vol. 14, no. 1, p. 4881, Aug. 2023. [Online]. Available: https://www.nature.com/articles/s41467-023-40604-3
  17. A. H. Ribeiro, M. H. Ribeiro, G. M. M. Paixão, D. M. Oliveira, P. R. Gomes, J. A. Canazart, M. P. S. Ferreira, C. R. Andersson, P. W. Macfarlane, W. Meira, T. B. Schön, and A. L. P. Ribeiro, “Automatic diagnosis of the 12-lead ECG using a deep neural network,” Nature Communications, vol. 11, no. 1, p. 1760, Apr. 2020. [Online]. Available: https://www.nature.com/articles/s41467-020-15432-4
  18. A. Ballas and C. Diou, “Towards Domain Generalization for ECG and EEG Classification: Algorithms and Benchmarks,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 44–54, Feb. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10233054/
  19. J. A. Behar, J. Levy, and L. A. Celi, “Generalization in medical AI: a perspective on developing scalable models,” 2023, publisher: [object Object] Version Number: 1. [Online]. Available: https://arxiv.org/abs/2311.05418
  20. G.-Q. Zhang, L. Cui, R. Mueller, S. Tao, M. Kim, M. Rueschman, S. Mariani, D. Mobley, and S. Redline, “The National Sleep Research Resource: towards a sleep data commons,” Journal of the American Medical Informatics Association, vol. 25, no. 10, pp. 1351–1358, Oct. 2018. [Online]. Available: https://academic.oup.com/jamia/article/25/10/1351/5026200
  21. S. Redline, P. V. Tishler, T. D. Tosteson, J. Williamson, K. Kump, I. Browner, V. Ferrette, and P. Krejci, “The Familial Aggregation of Obstructive Sleep Apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 3_pt_1, pp. 682–687, Mar. 1995. [Online]. Available: https://www.atsjournals.org/doi/10.1164/ajrccm/151.3_Pt_1.682
  22. J. P. Bakker, A. Tavakkoli, M. Rueschman, W. Wang, R. Andrews, A. Malhotra, R. L. Owens, A. Anand, K. A. Dudley, and S. R. Patel, “Gastric Banding Surgery versus Continuous Positive Airway Pressure for Obstructive Sleep Apnea: A Randomized Controlled Trial,” American Journal of Respiratory and Critical Care Medicine, vol. 197, no. 8, pp. 1080–1083, Apr. 2018. [Online]. Available: https://www.atsjournals.org/doi/10.1164/rccm.201708-1637LE
  23. C. L. Rosen, D. Auckley, R. Benca, N. Foldvary-Schaefer, C. Iber, V. Kapur, M. Rueschman, P. Zee, and S. Redline, “A Multisite Randomized Trial of Portable Sleep Studies and Positive Airway Pressure Autotitration Versus Laboratory-Based Polysomnography for the Diagnosis and Treatment of Obstructive Sleep Apnea: The HomePAP Study,” Sleep, vol. 35, no. 6, pp. 757–767, Jun. 2012. [Online]. Available: https://academic.oup.com/sleep/article-lookup/doi/10.5665/sleep.1870
  24. X. Chen, R. Wang, P. Zee, P. L. Lutsey, S. Javaheri, C. Alcántara, C. L. Jackson, M. A. Williams, and S. Redline, “Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA),” SLEEP, Jun. 2015. [Online]. Available: https://academic.oup.com/sleep/article-lookup/doi/10.5665/sleep.4732
  25. M. A. Goda, P. H. Charlton, and J. A. Behar, “pyPPG: A Python toolbox for comprehensive photoplethysmography signal analysis,” 2023, publisher: [object Object] Version Number: 1. [Online]. Available: https://arxiv.org/abs/2309.13767
  26. S. F. Quan, B. V. Howard, C. Iber, J. P. Kiley, F. J. Nieto, G. T. O’Connor, D. M. Rapoport, S. Redline, J. Robbins, J. M. Samet, and P. W. Wahl, “The Sleep Heart Health Study: Design, Rationale, and Methods,” Sleep, vol. 20, no. 12, pp. 1077–1085, Dec. 1997. [Online]. Available: https://doi.org/10.1093/sleep/20.12.1077
  27. X. Li, Y. Dai, Y. Ge, J. Liu, Y. Shan, and L.-Y. Duan, “Uncertainty Modeling for Out-of-Distribution Generalization,” 2022, publisher: [object Object] Version Number: 2. [Online]. Available: https://arxiv.org/abs/2202.03958
  28. F. Y. Sinaki, R. Ward, D. Abbott, J. Allen, R. R. Fletcher, C. Menon, and M. Elgendi, “Ethnic disparities in publicly-available pulse oximetry databases,” Communications Medicine, vol. 2, no. 1, p. 59, May 2022. [Online]. Available: https://www.nature.com/articles/s43856-022-00121-8
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets