SleepPPG-Net2: Deep learning generalization for sleep staging from photoplethysmography (2404.06869v1)
Abstract: Background: Sleep staging is a fundamental component in the diagnosis of sleep disorders and the management of sleep health. Traditionally, this analysis is conducted in clinical settings and involves a time-consuming scoring procedure. Recent data-driven algorithms for sleep staging, using the photoplethysmogram (PPG) time series, have shown high performance on local test sets but lower performance on external datasets due to data drift. Methods: This study aimed to develop a generalizable deep learning model for the task of four class (wake, light, deep, and rapid eye movement (REM)) sleep staging from raw PPG physiological time-series. Six sleep datasets, totaling 2,574 patients recordings, were used. In order to create a more generalizable representation, we developed and evaluated a deep learning model called SleepPPG-Net2, which employs a multi-source domain training approach.SleepPPG-Net2 was benchmarked against two state-of-the-art models. Results: SleepPPG-Net2 showed consistently higher performance over benchmark approaches, with generalization performance (Cohen's kappa) improving by up to 19%. Performance disparities were observed in relation to age, sex, and sleep apnea severity. Conclusion: SleepPPG-Net2 sets a new standard for staging sleep from raw PPG time-series.
- R. B. Berry, R. Brooks, C. Gamaldo, S. M. Harding, R. M. Lloyd, S. F. Quan, M. T. Troester, and B. V. Vaughn, “AASM Scoring Manual Updates for 2017 (Version 2.4),” Journal of Clinical Sleep Medicine, vol. 13, no. 05, pp. 665–666, May 2017. [Online]. Available: http://jcsm.aasm.org/doi/10.5664/jcsm.6576
- P. H. Charlton, J. Allen, R. Bailón, S. Baker, J. A. Behar, F. Chen, G. D. Clifford, D. A. Clifton, H. J. Davies, C. Ding, X. Ding, J. Dunn, M. Elgendi, M. Ferdoushi, D. Franklin, E. Gil, M. F. Hassan, J. Hernesniemi, X. Hu, N. Ji, Y. Khan, S. Kontaxis, I. Korhonen, P. A. Kyriacou, P. Laguna, J. Lázaro, C. Lee, J. Levy, Y. Li, C. Liu, J. Liu, L. Lu, D. P. Mandic, V. Marozas, E. Mejía-Mejía, R. Mukkamala, M. Nitzan, T. Pereira, C. C. Y. Poon, J. C. Ramella-Roman, H. Saarinen, M. M. H. Shandhi, H. Shin, G. Stansby, T. Tamura, A. Vehkaoja, W. K. Wang, Y.-T. Zhang, N. Zhao, D. Zheng, and T. Zhu, “The 2023 wearable photoplethysmography roadmap,” Physiological Measurement, vol. 44, no. 11, p. 111001, Nov. 2023. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6579/acead2
- K. Kotzen, P. H. Charlton, S. Salabi, L. Amar, A. Landesberg, and J. A. Behar, “SleepPPG-Net: A Deep Learning Algorithm for Robust Sleep Staging From Continuous Photoplethysmography,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 2, pp. 924–932, Feb. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9965588/
- N. Sridhar, A. Shoeb, P. Stephens, A. Kharbouch, D. B. Shimol, J. Burkart, A. Ghoreyshi, and L. Myers, “Deep learning for automated sleep staging using instantaneous heart rate,” npj Digital Medicine, vol. 3, no. 1, p. 106, Aug. 2020. [Online]. Available: https://www.nature.com/articles/s41746-020-0291-x
- M. Radha, P. Fonseca, A. Moreau, M. Ross, A. Cerny, P. Anderer, X. Long, and R. M. Aarts, “A deep transfer learning approach for wearable sleep stage classification with photoplethysmography,” npj Digital Medicine, vol. 4, no. 1, p. 135, Sep. 2021. [Online]. Available: https://www.nature.com/articles/s41746-021-00510-8
- R. Huttunen, T. Leppänen, B. Duce, A. Oksenberg, S. Myllymaa, J. Töyräs, and H. Korkalainen, “Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography,” SLEEP, vol. 44, no. 10, p. zsab142, Oct. 2021. [Online]. Available: https://academic.oup.com/sleep/article/doi/10.1093/sleep/zsab142/6294001
- A. Habib, M. A. Motin, T. Penzel, M. Palaniswami, J. Yearwood, and C. Karmakar, “Performance of a Convolutional Neural Network Derived From PPG Signal in Classifying Sleep Stages,” IEEE Transactions on Biomedical Engineering, vol. 70, no. 6, pp. 1717–1728, Jun. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9940577/
- X. Zhao and G. Sun, “A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals,” Entropy, vol. 23, no. 1, p. 116, Jan. 2021. [Online]. Available: https://www.mdpi.com/1099-4300/23/1/116
- Q. Li, Q. Li, A. S. Cakmak, G. Da Poian, D. L. Bliwise, V. Vaccarino, A. J. Shah, and G. D. Clifford, “Transfer learning from ECG to PPG for improved sleep staging from wrist-worn wearables,” Physiological Measurement, vol. 42, no. 4, p. 044004, Apr. 2021. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6579/abf1b0
- H. Korkalainen, J. Aakko, B. Duce, S. Kainulainen, A. Leino, S. Nikkonen, I. O. Afara, S. Myllymaa, J. Töyräs, and T. Leppänen, “Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea,” Sleep, vol. 43, no. 11, p. zsaa098, Nov. 2020. [Online]. Available: https://academic.oup.com/sleep/article/doi/10.1093/sleep/zsaa098/5841624
- O. Walch, Y. Huang, D. Forger, and C. Goldstein, “Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device,” Sleep, vol. 42, no. 12, p. zsz180, Dec. 2019. [Online]. Available: https://academic.oup.com/sleep/article/doi/10.1093/sleep/zsz180/5549536
- B. M. Wulterkens, P. Fonseca, L. W. Hermans, M. Ross, A. Cerny, P. Anderer, X. Long, J. P. Van Dijk, N. Vandenbussche, S. Pillen, M. M. Van Gilst, and S. Overeem, “It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography,” Nature and Science of Sleep, vol. Volume 13, pp. 885–897, Jun. 2021. [Online]. Available: https://www.dovepress.com/it-is-all-in-the-wrist-wearable-sleep-staging-in-a-clinical-population-peer-reviewed-fulltext-article-NSS
- A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, no. 23, Jun. 2000. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.CIR.101.23.e215
- M. G. Terzano, L. Parrino, A. Sherieri, R. Chervin, S. Chokroverty, C. Guilleminault, M. Hirshkowitz, M. Mahowald, H. Moldofsky, A. Rosa, R. Thomas, and A. Walters, “Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep,” Sleep Medicine, vol. 2, no. 6, pp. 537–553, Nov. 2001. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1389945701001496
- H. Phan, F. Andreotti, N. Cooray, O. Y. Chen, and M. De Vos, “SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 400–410, Mar. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8631195/
- J. Levy, D. Álvarez, F. Del Campo, and J. A. Behar, “Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry,” Nature Communications, vol. 14, no. 1, p. 4881, Aug. 2023. [Online]. Available: https://www.nature.com/articles/s41467-023-40604-3
- A. H. Ribeiro, M. H. Ribeiro, G. M. M. Paixão, D. M. Oliveira, P. R. Gomes, J. A. Canazart, M. P. S. Ferreira, C. R. Andersson, P. W. Macfarlane, W. Meira, T. B. Schön, and A. L. P. Ribeiro, “Automatic diagnosis of the 12-lead ECG using a deep neural network,” Nature Communications, vol. 11, no. 1, p. 1760, Apr. 2020. [Online]. Available: https://www.nature.com/articles/s41467-020-15432-4
- A. Ballas and C. Diou, “Towards Domain Generalization for ECG and EEG Classification: Algorithms and Benchmarks,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 44–54, Feb. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10233054/
- J. A. Behar, J. Levy, and L. A. Celi, “Generalization in medical AI: a perspective on developing scalable models,” 2023, publisher: [object Object] Version Number: 1. [Online]. Available: https://arxiv.org/abs/2311.05418
- G.-Q. Zhang, L. Cui, R. Mueller, S. Tao, M. Kim, M. Rueschman, S. Mariani, D. Mobley, and S. Redline, “The National Sleep Research Resource: towards a sleep data commons,” Journal of the American Medical Informatics Association, vol. 25, no. 10, pp. 1351–1358, Oct. 2018. [Online]. Available: https://academic.oup.com/jamia/article/25/10/1351/5026200
- S. Redline, P. V. Tishler, T. D. Tosteson, J. Williamson, K. Kump, I. Browner, V. Ferrette, and P. Krejci, “The Familial Aggregation of Obstructive Sleep Apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 3_pt_1, pp. 682–687, Mar. 1995. [Online]. Available: https://www.atsjournals.org/doi/10.1164/ajrccm/151.3_Pt_1.682
- J. P. Bakker, A. Tavakkoli, M. Rueschman, W. Wang, R. Andrews, A. Malhotra, R. L. Owens, A. Anand, K. A. Dudley, and S. R. Patel, “Gastric Banding Surgery versus Continuous Positive Airway Pressure for Obstructive Sleep Apnea: A Randomized Controlled Trial,” American Journal of Respiratory and Critical Care Medicine, vol. 197, no. 8, pp. 1080–1083, Apr. 2018. [Online]. Available: https://www.atsjournals.org/doi/10.1164/rccm.201708-1637LE
- C. L. Rosen, D. Auckley, R. Benca, N. Foldvary-Schaefer, C. Iber, V. Kapur, M. Rueschman, P. Zee, and S. Redline, “A Multisite Randomized Trial of Portable Sleep Studies and Positive Airway Pressure Autotitration Versus Laboratory-Based Polysomnography for the Diagnosis and Treatment of Obstructive Sleep Apnea: The HomePAP Study,” Sleep, vol. 35, no. 6, pp. 757–767, Jun. 2012. [Online]. Available: https://academic.oup.com/sleep/article-lookup/doi/10.5665/sleep.1870
- X. Chen, R. Wang, P. Zee, P. L. Lutsey, S. Javaheri, C. Alcántara, C. L. Jackson, M. A. Williams, and S. Redline, “Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA),” SLEEP, Jun. 2015. [Online]. Available: https://academic.oup.com/sleep/article-lookup/doi/10.5665/sleep.4732
- M. A. Goda, P. H. Charlton, and J. A. Behar, “pyPPG: A Python toolbox for comprehensive photoplethysmography signal analysis,” 2023, publisher: [object Object] Version Number: 1. [Online]. Available: https://arxiv.org/abs/2309.13767
- S. F. Quan, B. V. Howard, C. Iber, J. P. Kiley, F. J. Nieto, G. T. O’Connor, D. M. Rapoport, S. Redline, J. Robbins, J. M. Samet, and P. W. Wahl, “The Sleep Heart Health Study: Design, Rationale, and Methods,” Sleep, vol. 20, no. 12, pp. 1077–1085, Dec. 1997. [Online]. Available: https://doi.org/10.1093/sleep/20.12.1077
- X. Li, Y. Dai, Y. Ge, J. Liu, Y. Shan, and L.-Y. Duan, “Uncertainty Modeling for Out-of-Distribution Generalization,” 2022, publisher: [object Object] Version Number: 2. [Online]. Available: https://arxiv.org/abs/2202.03958
- F. Y. Sinaki, R. Ward, D. Abbott, J. Allen, R. R. Fletcher, C. Menon, and M. Elgendi, “Ethnic disparities in publicly-available pulse oximetry databases,” Communications Medicine, vol. 2, no. 1, p. 59, May 2022. [Online]. Available: https://www.nature.com/articles/s43856-022-00121-8