2000 character limit reached
Efficiently Cooling Quantum Systems with Finite Resources: Insights from Thermodynamic Geometry (2404.06649v2)
Published 9 Apr 2024 in quant-ph
Abstract: Landauer's limit on heat dissipation during information erasure is critical as devices shrink, requiring optimal pure-state preparation to minimise errors. However, Nernst's third law states this demands infinite resources in energy, time, or control complexity. We address the challenge of cooling quantum systems with finite resources. Using Markovian collision models, we explore resource trade-offs and present efficient cooling protocols (that are optimal for qubits) for coherent and incoherent control. Leveraging thermodynamic length, we derive bounds on heat dissipation for swap-based strategies and discuss the limitations of preparing pure states efficiently.
- Charles H. Bennett, The thermodynamics of computation – a review, Int. J. Theor. Phys. 21, 905 (1982).
- Rolf Landauer, Irreversibility and Heat Generation in the Computing Process, IBM J. Res. Dev. 5, 183 (1961).
- David Reeb and Michael M. Wolf, An improved Landauer principle with finite-size corrections, New J. Phys. 16, 103011 (2014), arXiv:1306.4352.
- Frank Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63, 2479 (1975).
- Peter Salamon and Richard Stephen Berry, Thermodynamic Length and Dissipated Availability, Phys. Rev. Lett. 51, 1127 (1983).
- Gavin E. Crooks, Measuring Thermodynamic Length, Phys. Rev. Lett. 99, 100602 (2007), arXiv:0706.0559.
- Matteo Scandi and Martí Perarnau-Llobet, Thermodynamic length in open quantum systems, Quantum 3, 197 (2019), arXiv:1810.05583.
- Jayaseetha Rau, Relaxation Phenomena in Spin and Harmonic Oscillator Systems, Phys. Rev. 129, 1880 (1963).
- Francesco Ciccarello, Collision models in quantum optics, Quantum Meas. Quantum Metrol. 4, 53 (2017), arXiv:1712.04994.
- Fabien Clivaz, Optimal Manipulation Of Correlations And Temperature In Quantum Thermodynamics, Ph.D. thesis, University of Geneva (2020), arXiv:2012.04321.
- Sadegh Raeisi and Michele Mosca, Asymptotic Bound for Heat-Bath Algorithmic Cooling, Phys. Rev. Lett. 114, 100404 (2015), arXiv:1407.3232.
- Nayeli Azucena Rodríguez-Briones and Raymond Laflamme, Achievable Polarization for Heat-Bath Algorithmic Cooling, Phys. Rev. Lett. 116, 170501 (2016), arXiv:1412.6637.
- Amikam Levy and Ronnie Kosloff, Quantum Absorption Refrigerator, Phys. Rev. Lett. 108, 070604 (2012), arXiv:1109.0728.
- Walther Nernst, Über die Beziehung zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen. in Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Berlin, 1906) p. 933.
- Francesco Ticozzi and Lorenza Viola, Quantum resources for purification and cooling: fundamental limits and opportunities, Sci. Rep. 4, 5192 (2014), arXiv:1403.8143.
- Lluis Masanes and Jonathan Oppenheim, A general derivation and quantification of the third law of thermodynamics, Nat. Commun. 8, 14538 (2017), arXiv:1412.3828.
- Massimiliano Esposito and Christian Van den Broeck, Second law and Landauer principle far from equilibrium, Europhys. Lett. 95, 40004 (2011), arXiv:1104.5165.
- David A. Sivak and Gavin E. Crooks, Thermodynamic Metrics and Optimal Paths, Phys. Rev. Lett. 108, 190602 (2012a), arXiv:1201.4166.
- Anna Jenčová, Geodesic distances on density matrices, J. Math. Phys. 45, 1787 (2004), arXiv:math-ph/0312044.
- David A. Sivak and Gavin E. Crooks, Thermodynamic metrics and optimal paths, Phys. Rev. Lett. 108, 190602 (2012b), arXiv:1201.4166.
- Kay Brandner and Keiji Saito, Thermodynamic Geometry of Microscopic Heat Engines, Phys. Rev. Lett. 124, 040602 (2020), arXiv:1907.06780.
- Harry J. D. Miller and Mohammad Mehboudi, Geometry of work fluctuations versus efficiency in microscopic thermal machines, Phys. Rev. Lett. 125, 260602 (2020), arXiv:2009.02261.
- Adam G. Frim and Michael R. DeWeese, Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles, Phys. Rev. Lett. 128, 230601 (2022), arXiv:2112.10797.
- Elliott H. Lieb and Mary Beth Ruskai, Proof of the strong subadditivity of quantum‐mechanical entropy, J. Math. Phys. 14, 1938 (1973).