Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laue Indexing with Optimal Transport (2404.06478v1)

Published 9 Apr 2024 in cond-mat.mtrl-sci and eess.IV

Abstract: Laue tomography experiments retrieve the positions and orientations of crystal grains in a polycrystalline samples from diffraction patterns recorded at multiple viewing angles. The use of a broad wavelength spectrum beam can greatly reduce the experimental time, but poses a difficult challenge for the indexing of diffraction peaks in polycrystalline samples; the information about the wavelength of these Bragg peaks is absent and the diffraction patterns from multiple grains are superimposed. To date, no algorithms exist capable of indexing samples with more than about 500 grains efficiently. To address this need we present a novel method: Laue indexing with Optimal Transport (LaueOT). We create a probabilistic description of the multi-grain indexing problem and propose a solution based on Sinkhorn Expectation-Maximization method, which allows to efficiently find the maximum of the likelihood thanks to the assignments being calculated using Optimal Transport. This is a non-convex optimization problem, where the orientations and positions of grains are optimized simultaneously with grain-to-spot assignments, while robustly handling the outliers. The selection of initial prototype grains to consider in the optimization problem are also calculated within the Optimal Transport framework. LaueOT can rapidly and effectively index up to 1000 grains on a single large memory GPU within less than 30 minutes. We demonstrate the performance of LaueOT on simulations with variable numbers of grains, spot position measurement noise levels, and outlier fractions. The algorithm recovers the correct number of grains even for high noise levels and up to 70% outliers in our experiments. We compare the results of indexing with LaueOT to existing algorithms both on synthetic and real neutron diffraction data from well-characterized samples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys., vol. 23, pp. 287–310, Oct 1951. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.23.287
  2. T. Welberry and T. Weber, “One hundred years of diffuse scattering,” Crystallography Reviews, vol. 22, no. 1, pp. 2–78, 2016. [Online]. Available: https://doi.org/10.1080/0889311X.2015.1046853
  3. H. O. Sørensen, S. Schmidt, J. P. Wright, G. B. M. Vaughan, S. Techert, E. F. Garman, J. Oddershede, J. Davaasambuu, K. S. Paithankar, C. Gundlach, and H. F. Poulsen, “Multigrain crystallography,” vol. 227, no. 1, pp. 63–78, 2012. [Online]. Available: https://doi.org/10.1524/zkri.2012.1438
  4. M. A. Groeber, B. Haley, M. D. Uchic, D. M. Dimiduk, and S. Ghosh, “3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system,” Materials Characterization, vol. 57, no. 4-5, pp. 259–273, 2006.
  5. S. Zaefferer, S. Wright, and D. Raabe, “Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: A new dimension of microstructure characterization,” Metallurgical and Materials Transactions A, vol. 39, no. 2, pp. 374–389, 2008.
  6. H. Liu, S. Schmidt, H. F. Poulsen, A. Godfrey, Z. Liu, J. Sharon, and X. Huang, “Three-dimensional orientation mapping in the transmission electron microscope,” Science, vol. 332, no. 6031, pp. 833–834, 2011.
  7. P. J. Konijnenberg, S. Zaefferer, and D. Raabe, “Assessment of geometrically necessary dislocation levels derived by 3D EBSD,” Acta Materialia, vol. 99, pp. 402–414, 2015.
  8. G. Stechmann, S. Zaefferer, P. Konijnenberg, D. Raabe, C. Gretener, L. Kranz, J. Perrenoud, S. Buecheler, and A. N. Tiwari, “3-Dimensional microstructural characterization of CdTe absorber layers from CdTe/CdS thin film solar cells,” Solar Energy Materials and Solar Cells, vol. 151, pp. 66–80, 2016.
  9. S. Smeets, X. Zou, and W. Wan, “Serial electron crystallography for structure determination and phase analysis of nanocrystalline materials,” Journal of Applied Crystallography, vol. 51, no. 5, pp. 1262–1273, 2018.
  10. W. Zhu, G. Wu, A. Godfrey, S. Schmidt, Q. He, Z. Feng, T. Huang, L. Zhang, and X. Huang, “Five-parameter grain boundary character distribution of gold nanoparticles based on three dimensional orientation mapping in the tem,” Scripta Materialia, vol. 214, p. 114677, 2022.
  11. H. F. Poulsen, S. F. Nielsen, E. M. Lauridsen, S. Schmidt, R. Suter, U. Lienert, L. Margulies, T. Lorentzen, and D. Juul Jensen, “Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders,” Journal of Applied Crystallography, vol. 34, no. 6, pp. 751–756, 2001.
  12. B. Larson, W. Yang, G. Ice, J. Budai, and J. Tischler, “Three-dimensional X-ray structural microscopy with submicrometre resolution,” Nature, vol. 415, no. 6874, pp. 887–890, 2002.
  13. D. J. Jensen, E. Lauridsen, L. Margulies, H. Poulsen, S. Schmidt, H. Sørensen, and G. Vaughan, “X-ray microscopy in four dimensions,” Materials Today, vol. 9, no. 1-2, pp. 18–25, 2006.
  14. W. Ludwig, S. Schmidt, E. M. Lauridsen, and H. F. Poulsen, “X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. direct beam case,” Journal of Applied Crystallography, vol. 41, no. 2, pp. 302–309, 2008.
  15. G. Johnson, A. King, M. G. Honnicke, J. Marrow, and W. Ludwig, “X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. the combined case,” Journal of Applied Crystallography, vol. 41, no. 2, pp. 310–318, 2008.
  16. W. Ludwig, P. Reischig, A. King, M. Herbig, E. Lauridsen, G. Johnson, T. Marrow, and J.-Y. Buffiere, “Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis,” Review of Scientific Instruments, vol. 80, no. 3, p. 033905, 2009.
  17. W. Ludwig, A. King, P. Reischig, M. Herbig, E. M. Lauridsen, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens, S. R. Du Roscoat et al., “New opportunities for 3d materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging,” Materials Science and Engineering: A, vol. 524, no. 1-2, pp. 69–76, 2009.
  18. U. Lienert, S. Li, C. Hefferan, J. Lind, R. Suter, J. Bernier, N. Barton, M. Brandes, M. Mills, M. Miller et al., “High-energy diffraction microscopy at the advanced photon source,” JOM, vol. 63, no. 7, pp. 70–77, 2011.
  19. D. J. Jensen and H. F. Poulsen, “The three dimensional X-ray diffraction technique,” Materials Characterization, vol. 72, pp. 1–7, 2012.
  20. S. A. McDonald, P. Reischig, C. Holzner, E. M. Lauridsen, P. J. Withers, A. P. . Merkle, and M. Feser, “Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy,” Scientific Reports, vol. 5, no. 1, pp. 1–11, 2015.
  21. M. Raventós, M. Tovar, M. Medarde, T. Shang, M. Strobl, S. Samothrakitis, E. Pomjakushina, C. Grünzweig, and S. Schmidt, “Laue three dimensional neutron diffraction,” Scientific Reports, vol. 9, no. 1, p. 4798, 2019. [Online]. Available: https://doi.org/10.1038/s41598-019-41071-x
  22. S. Samothrakitis, C. B. Larsen, J. Čapek, E. Polatidis, M. Raventos, M. Tovar, S. Schmidt, and M. Strobl, “Microstructural characterization through grain orientation mapping with laue three-dimensional neutron diffraction tomography,” Materials Today Advances, vol. 15, p. 100258, 2022.
  23. S. Peetermans and E. H. Lehmann, “Simultaneous neutron transmission and diffraction contrast tomography as a non-destructive 3D method for bulk single crystal quality investigations,” Journal of Applied Physics, vol. 114, no. 12, p. 124905, 2013.
  24. R. Woracek, D. Penumadu, N. Kardjilov, A. Hilger, M. Boin, J. Banhart, and I. Manke, “3D mapping of crystallographic phase distribution using energy-selective neutron tomography,” Advanced Materials, vol. 26, no. 24, pp. 4069–4073, 2014.
  25. S. Peetermans, A. King, W. Ludwig, P. Reischig, and E. Lehmann, “Cold neutron diffraction contrast tomography of polycrystalline material,” Analyst, vol. 139, no. 22, pp. 5765–5771, 2014.
  26. H. Sato, Y. Shiota, S. Morooka, Y. Todaka, N. Adachi, S. Sadamatsu, K. Oikawa, M. Harada, S. Zhang, Y. Su et al., “Inverse pole figure mapping of bulk crystalline grains in a polycrystalline steel plate by pulsed neutron Bragg-dip transmission imaging,” Journal of Applied Crystallography, vol. 50, no. 6, pp. 1601–1610, 2017.
  27. A. Cereser, M. Strobl, S. A. Hall, A. Steuwer, R. Kiyanagi, A. S. Tremsin, E. B. Knudsen, T. Shinohara, P. K. Willendrup, A. B. da Silva Fanta et al., “Time-of-flight three dimensional neutron diffraction in transmission mode for mapping crystal grain structures,” Scientific Reports, vol. 7, no. 1, pp. 1–11, 2017.
  28. R. Woracek, J. Santisteban, A. Fedrigo, and M. Strobl, “Diffraction in neutron imaging-A review,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 878, pp. 141–158, 2018.
  29. S. Samothrakitis, M. Raventós, J. Čapek, C. B. Larsen, C. Grünzweig, M. Tovar, M. Garcia-Gonzalez, J. Kopeček, S. Schmidt, and M. Strobl, “Grain morphology reconstruction of crystalline materials from Laue three-dimensional neutron diffraction tomography,” Scientific Reports, vol. 10, no. 1, pp. 1–7, 2020.
  30. S. Schmidt, “GrainSpotter: a fast and robust polycrystalline indexing algorithm,” Journal of Applied Crystallography, vol. 47, no. 1, pp. 276–284, Feb 2014. [Online]. Available: https://doi.org/10.1107/S1600576713030185
  31. Y. Gevorkov, A. Barty, W. Brehm, T. A. White, A. Tolstikova, M. O. Wiedorn, A. Meents, R.-R. Grigat, H. N. Chapman, and O. Yefanov, “pinkIndexer – a universal indexer for pink-beam X-ray and electron diffraction snapshots,” Acta Crystallographica Section A, vol. 76, no. 2, pp. 121–131, Mar 2020. [Online]. Available: https://doi.org/10.1107/S2053273319015559
  32. Y. Gevorkov, O. Yefanov, A. Barty, T. A. White, V. Mariani, W. Brehm, A. Tolstikova, R.-R. Grigat, and H. N. Chapman, “XGANDALF – extended gradient descent algorithm for lattice finding,” Acta Crystallographica Section A, vol. 75, no. 5, pp. 694–704, Sep 2019. [Online]. Available: https://doi.org/10.1107/S2053273319010593
  33. J. A. Kalinowski, A. Makal, and P. Coppens, “The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data,” Journal of Applied Crystallography, vol. 44, no. 6, pp. 1182–1189, Dec 2011. [Online]. Available: https://doi.org/10.1107/S0021889811038143
  34. S. Schlitt, T. E. Gorelik, A. A. Stewart, E. Schömer, T. Raasch, and U. Kolb, “Application of clustering techniques to electron-diffraction data: determination of unit-cell parameters,” Acta Crystallographica Section A, vol. 68, no. 5, pp. 536–546, Sep 2012. [Online]. Available: https://doi.org/10.1107/S0108767312026438
  35. C. Wejdemann and H. F. Poulsen, “Multigrain indexing of unknown multiphase materials,” Journal of Applied Crystallography, vol. 49, no. 2, pp. 616–621, Apr 2016. [Online]. Available: https://doi.org/10.1107/S1600576716003691
  36. R. R. P. Purushottam Raj Purohit, S. Tardif, O. Castelnau, J. Eymery, R. Guinebretière, O. Robach, T. Ors, and J.-S. Micha, “LaueNN: neural-network-based hkl recognition of Laue spots and its application to polycrystalline materials,” Journal of Applied Crystallography, vol. 55, no. 4, pp. 737–750, Aug 2022. [Online]. Available: https://doi.org/10.1107/S1600576722004198
  37. S. Samothrakitis, C. B. Larsen, A. Kaestner, E. Polatidis, J. Čapek, J. Hovind, A. Fazan, J. Allibon, M. Busi, S. Schmidt, J. Kopeček, and M. Strobl, “The FALCON double-detector Laue diffractometer add-on for grain mapping at POLDI,” Journal of Applied Crystallography, vol. 56, no. 6, pp. 1792–1801, Dec 2023. [Online]. Available: https://doi.org/10.1107/S1600576723009640
  38. J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  39. X. Huang, G. Mei, J. Zhang, and R. Abbas, “A comprehensive survey on point cloud registration,” arXiv preprint arXiv:2103.02690, 2021.
  40. G. Peyré, M. Cuturi et al., “Computational optimal transport: With applications to data science,” Foundations and Trends® in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 2019.
  41. G. Mena, A. Nejatbakhsh, E. Varol, and J. Niles-Weed, “Sinkhorn em: an expectation-maximization algorithm based on entropic optimal transport,” arXiv preprint arXiv:2006.16548, 2020.
  42. S. J. Wright, “Coordinate descent algorithms,” Mathematical programming, vol. 151, no. 1, pp. 3–34, 2015.
  43. K. S. Gurumoorthy, P. Jawanpuria, and B. Mishra, “Spot: A framework for selection of prototypes using optimal transport,” in Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part IV 21.   Springer, 2021, pp. 535–551.
  44. L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, “Scaling algorithms for unbalanced optimal transport problems,” Mathematics of Computation, vol. 87, no. 314, pp. 2563–2609, 2018.
  45. J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “Iterative bregman projections for regularized transportation problems,” SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A1111–A1138, 2015.
  46. H. Sharma, R. M. Huizenga, and S. E. Offerman, “A fast methodology to determine the characteristics of thousands of grains using three-dimensional x-ray diffraction. ii. volume, centre-of-mass position, crystallographic orientation and strain state of grains,” Journal of Applied Crystallography, vol. 45, no. 4, pp. 705–718, 2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1107/S0021889812025599
  47. F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, “Structure from motion without correspondence,” in Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), vol. 2, 2000, pp. 557–564 vol.2.
  48. P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239–256, 1992.
  49. S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness, “New algorithms for 2d and 3d point matching: pose estimation and correspondence,” Pattern Recognition, vol. 31, no. 8, pp. 1019–1031, 1998.
  50. R. Sinkhorn, “A relationship between arbitrary positive matrices and doubly stochastic matrices,” The Annals of Mathematical Statistics, vol. 35, no. 2, pp. 876–879, 1964. [Online]. Available: http://www.jstor.org/stable/2238545
  51. M. Blondel, V. Seguy, and A. Rolet, “Smooth and sparse optimal transport,” in International conference on artificial intelligence and statistics.   PMLR, 2018, pp. 880–889.
  52. B. Schmitzer, “Stabilized sparse scaling algorithms for entropy regularized transport problems,” SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. A1443–A1481, 2019.
  53. T. Liu, J. Puigcerver, and M. Blondel, “Sparsity-constrained optimal transport,” 2023.
  54. D. Alvarez-Melis, T. Jaakkola, and S. Jegelka, “Structured optimal transport,” in Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, A. Storkey and F. Perez-Cruz, Eds., vol. 84.   PMLR, 09–11 Apr 2018, pp. 1771–1780. [Online]. Available: https://proceedings.mlr.press/v84/alvarez-melis18a.html
  55. R. Fisher, “Dispersion on a Sphere,” Proceedings of the Royal Society of London Series A, vol. 217, no. 1130, pp. 295–305, May 1953.
  56. A. Figalli, “The optimal partial transport problem,” Archive for Rational Mechanics and Analysis, vol. 195, no. 2, pp. 533–560, 2010.
  57. A. Rangarajan, H. Chui, and F. L. Bookstein, “The softassign procrustes matching algorithm,” in Information Processing in Medical Imaging, J. Duncan and G. Gindi, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 29–42.
  58. N. Ueda and R. Nakano, “Deterministic annealing variant of the em algorithm,” in Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7.   MIT Press, 1994. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/1994/file/92262bf907af914b95a0fc33c3f33bf6-Paper.pdf
  59. R. Frühwirth and W. Waltenberger, “Redescending m-estimators and deterministic annealing, with applications to robust regression and tail index estimation,” Austrian Journal of Statistics, vol. 37, no. 34, p. 301–317, Apr. 2016. [Online]. Available: https://www.ajs.or.at/index.php/ajs/article/view/vol37%2C%20no3%264%20-%207
  60. B. Schmitzer, “A sparse multiscale algorithm for dense optimal transport,” Journal of Mathematical Imaging and Vision, vol. 56, no. 2, pp. 238–259, 2016.
  61. G. Terzakis, M. Lourakis, and D. Ait-Boudaoud, “Modified rodrigues parameters: An efficient representation of orientation in 3d vision and graphics,” Journal of Mathematical Imaging and Vision, vol. 60, no. 3, pp. 422–442, 2018.
  62. Y. He and J. J. Jonas, “Representation of orientation relationships in Rodrigues–Frank space for any two classes of lattice,” Journal of Applied Crystallography, vol. 40, no. 3, pp. 559–569, Jun 2007.
  63. B. Riaz, Y. Karahan, and A. J. Brockmeier, “Partial optimal transport for support subset selection,” Transactions on Machine Learning Research, 2023. [Online]. Available: https://openreview.net/forum?id=75CcopPxIr
  64. H. E. Boyer and T. L. Gall, “Metals handbook; desk edition,” 1985.
  65. S. Samothrakitis, C. B. Larsen, R. Woracek, L. Heller, J. Kopeček, G. Gerstein, H. J. Maier, M. Rameš, M. Tovar, P. Šittner et al., “A multiscale study of hot-extruded coniga ferromagnetic shape-memory alloys,” Materials & Design, vol. 196, p. 109118, November 2020.
  66. G. Wahba, “A least squares estimate of satellite attitude,” SIAM Review, vol. 7, no. 3, pp. 409–409, 1965. [Online]. Available: https://doi.org/10.1137/1007077
  67. H. Liu, W. Wu, and A. M.-C. So, “Quadratic optimization with orthogonality constraints: Explicit lojasiewicz exponent and linear convergence of line-search methods,” in International Conference on Machine Learning.   PMLR, 2016, pp. 1158–1167.
  68. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions—i,” Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.
  69. U. Stuhr, M. Grosse, and W. Wagner, “The tof-strain scanner poldi with multiple frame overlap—concept and performance,” Materials Science and Engineering: A, vol. 437, no. 1, pp. 134–138, 2006.

Summary

We haven't generated a summary for this paper yet.