Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A universal sequence of tensors for the asymptotic rank conjecture (2404.06427v1)

Published 9 Apr 2024 in cs.CC, cs.DS, and math.AG

Abstract: The exponent $\sigma(T)$ of a tensor $T\in\mathbb{F}d\otimes\mathbb{F}d\otimes\mathbb{F}d$ over a field $\mathbb{F}$ captures the base of the exponential growth rate of the tensor rank of $T$ under Kronecker powers. Tensor exponents are fundamental from the standpoint of algorithms and computational complexity theory; for example, the exponent $\omega$ of matrix multiplication can be characterized as $\omega=2\sigma(\mathrm{MM}2)$, where $\mathrm{MM}_2\in\mathbb{F}4\otimes\mathbb{F}4\otimes\mathbb{F}4$ is the tensor that represents $2\times 2$ matrix multiplication. Our main result is an explicit construction of a sequence $\mathcal{U}_d$ of zero-one-valued tensors that is universal for the worst-case tensor exponent; more precisely, we show that $\sigma(\mathcal{U}_d)=\sigma(d)$ where $\sigma(d)=\sup{T\in\mathbb{F}d\otimes\mathbb{F}d\otimes\mathbb{F}d}\sigma(T)$. We also supply an explicit universal sequence $\mathcal{U}\Delta$ localised to capture the worst-case exponent $\sigma(\Delta)$ of tensors with support contained in $\Delta\subseteq [d]\times[d]\times [d]$; by combining such sequences, we obtain a universal sequence $\mathcal{T}_d$ such that $\sigma(\mathcal{T}_d)=1$ holds if and only if Strassen's asymptotic rank conjecture [Progr. Math. 120 (1994)] holds for $d$. Finally, we show that the limit $\lim{d\rightarrow\infty}\sigma(d)$ exists and can be captured as $\lim_{d\rightarrow\infty} \sigma(D_d)$ for an explicit sequence $(D_d)_{d=1}\infty$ of tensors obtained by diagonalisation of the sequences $\mathcal{U}_d$. As our second result we relate the absence of polynomials of fixed degree vanishing on tensors of low rank, or more generally asymptotic rank, with upper bounds on the exponent $\sigma(d)$. Using this technique, one may bound asymptotic rank for all tensors of a given format, knowing enough specific tensors of low asymptotic rank.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. Tensor rank: Some lower and upper bounds. In 2011 IEEE 26th Annual Conference on Computational Complexity, pages 283–291. IEEE, 2011.
  2. J. Alman and V. Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 522–539. [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA, 2021.
  3. J. Alman and H. Zhang. Generalizations of matrix multiplication can solve the light bulb problem. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1471–1495. IEEE, 2023.
  4. A. Bernardi and K. Ranestad. On the cactus rank of cubic forms. Journal of Symbolic Computation, 50:291–297, 2013.
  5. A. Bernardi and D. Taufer. Waring, tangential and cactus decompositions. Journal de Mathématiques Pures et Appliquées, 143:1–30, 2020.
  6. O⁢(n2.7799)𝑂superscript𝑛2.7799O(n^{2.7799})italic_O ( italic_n start_POSTSUPERSCRIPT 2.7799 end_POSTSUPERSCRIPT ) complexity for n×n𝑛𝑛n\times nitalic_n × italic_n approximate matrix multiplication. Inform. Process. Lett., 8(5):234–235, 1979.
  7. A. Björklund and P. Kaski. The asymptotic rank conjecture and the set cover conjecture are not both true. CoRR, abs/2310.11926, 2023.
  8. M. Bläser. A 52⁢n252superscript𝑛2\frac{5}{2}n^{2}divide start_ARG 5 end_ARG start_ARG 2 end_ARG italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-lower bound for the rank of n×n𝑛𝑛n\times nitalic_n × italic_n-matrix multiplication over arbitrary fields. In 40th Annual Symposium on Foundations of Computer Science (New York, 1999), pages 45–50. IEEE Computer Soc., Los Alamitos, CA, 1999.
  9. The border support rank of two-by-two matrix multiplication is seven. Chic. J. Theor. Comput. Sci., 2018.
  10. Matrix multiplication via matrix groups. In Y. T. Kalai, editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
  11. Equations for GL invariant families of polynomials. Vietnam Journal of Mathematics, 50(2):545–556, 2022.
  12. W. Buczyńska and J. Buczyński. Secant varieties to high degree veronese reembeddings, catalecticant matrices and smoothable gorenstein schemes. Journal of Algebraic Geometry, 23(1):63–90, 2014.
  13. W. Buczyńska and J. Buczyński. Apolarity, border rank, and multigraded hilbert scheme. Duke Mathematical Journal, 170(16):3659–3702, 2021.
  14. J. Buczyński and J. M. Landsberg. Ranks of tensors and a generalization of secant varieties. Linear Algebra and its Applications, 438(2):668–689, 2013.
  15. P. Bürgisser. Degenerationsordnung und Trägerfunktional bilinearer Abbildungen. PhD thesis, Universität Konstanz, 1990.
  16. Algebraic Complexity Theory. Springer Science & Business Media, 2013.
  17. Barriers for fast matrix multiplication from irreversibility. Theory Comput., 17:Paper No. 2, 32, 2021.
  18. Universal points in the asymptotic spectrum of tensors. J. Amer. Math. Soc., 36(1):31–79, 2023.
  19. Group-theoretic algorithms for matrix multiplication. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 379–388. IEEE Computer Society, 2005.
  20. H. Cohn and C. Umans. A group-theoretic approach to fast matrix multiplication. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 438–449. IEEE Computer Society, 2003.
  21. H. Cohn and C. Umans. Fast matrix multiplication using coherent configurations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1074–1087. SIAM, Philadelphia, PA, 2012.
  22. Rank and border rank of Kronecker powers of tensors and Strassen’s laser method. Comput. Complexity, 31(1):Paper No. 1, 40, 2022.
  23. Towards a geometric approach to Strassen’s asymptotic rank conjecture. Collect. Math., 72(1):63–86, 2021.
  24. New lower bounds for matrix multiplication and det3subscriptdet3\operatorname{det}_{3}roman_det start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Forum of Mathematics, Pi, 11:e17, 2023.
  25. D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. SIAM J. Comput., 11(3):472–492, 1982.
  26. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251–280, 1990.
  27. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015.
  28. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016.
  29. Parameterized Algorithms. Springer, 2015.
  30. Faster matrix multiplication via asymmetric hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2129–2138. IEEE, 2023.
  31. M. Gałązka. Vector bundles give equations of cactus varieties. Linear Algebra and its Applications, 521:254–262, 2017.
  32. M. Gałązka. Multigraded apolarity. Mathematische Nachrichten, 296(1):286–313, 2023.
  33. P. A. Gartenberg. Fast Rectangular Matrix Multiplication. PhD thesis, University of California, Los Angeles, 1985.
  34. J. Håstad. Tensor rank is NP-complete. J. Algorithms, 11(4):644–654, 1990.
  35. Equations for lower bounds on border rank. Experimental Mathematics, 22(4):372–383, 2013.
  36. Most tensor problems are NP-hard. J. ACM, 60(6):Art. 45, 39, 2013.
  37. A. Iarrobino and V. Kanev. Power sums, Gorenstein algebras, and determinantal loci. Springer Science & Business Media, 1999.
  38. M. Karppa and P. Kaski. Probabilistic tensors and opportunistic Boolean matrix multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 496–515. SIAM, Philadelphia, PA, 2019.
  39. R. Krauthgamer and O. Trabelsi. The set cover conjecture and subgraph isomorphism with a tree pattern. In R. Niedermeier and C. Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 45:1–45:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
  40. J. Landsberg. Nontriviality of equations and explicit tensors in ℂm⊗ℂm⊗ℂmtensor-productsuperscriptℂ𝑚superscriptℂ𝑚superscriptℂ𝑚\mathbb{C}^{m}\otimes\mathbb{C}^{m}\otimes\mathbb{C}^{m}blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊗ blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊗ blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT of border rank at least 2⁢m−22𝑚22m-22 italic_m - 2. Journal of Pure and Applied Algebra, 219(8):3677–3684, 2015.
  41. J. Landsberg and M. Michałek. Towards finding hay in a haystack: explicit tensors of border rank greater than 2.02⁢m2.02𝑚2.02m2.02 italic_m in ℂm⊗ℂm⊗ℂmtensor-productsuperscriptℂ𝑚superscriptℂ𝑚superscriptℂ𝑚\mathbb{C}^{m}\otimes\mathbb{C}^{m}\otimes\mathbb{C}^{m}blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊗ blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊗ blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT. arXiv preprint arXiv:1912.11927, 2019.
  42. J. M. Landsberg. The border rank of the multiplication of 2×2222\times 22 × 2 matrices is seven. J. Amer. Math. Soc., 19(2):447–459, 2006.
  43. J. M. Landsberg. Tensors: Geometry and Applications, volume 128 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
  44. J. M. Landsberg. New lower bounds for the rank of matrix multiplication. SIAM Journal on Computing, 43(1):144–149, 2014.
  45. J. M. Landsberg. Tensors: Asymptotic Geometry and Developments 2016–2018, volume 132 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 2019.
  46. J. M. Landsberg and L. Manivel. On the ideals of secant varieties of Segre varieties. Foundations of Computational Mathematics, 4:397–422, 2004.
  47. J. M. Landsberg and M. Michałek. On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry. SIAM Journal on Applied Algebra and Geometry, 1(1):2–19, 2017.
  48. J. M. Landsberg and M. Michałek. A lower bound for the border rank of matrix multiplication. International Mathematics Research Notices, 2018(15):4722–4733, 2018.
  49. J. M. Landsberg and G. Ottaviani. Equations for secant varieties of veronese and other varieties. Annali di Matematica Pura ed Applicata, 192(4):569–606, 2013.
  50. J. M. Landsberg and G. Ottaviani. New lower bounds for the border rank of matrix multiplication. Theory of Computing, 11(1):285–298, 2015.
  51. J. M. Landsberg and Z. Teitler. On the ranks and border ranks of symmetric tensors. Foundations of Computational Mathematics, 10(3):339–366, 2010.
  52. F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 296–303. ACM, New York, 2014.
  53. F. Mauch. Ein Randverteilungsproblem und seine Anwendung auf das asymptotische Spektrum bilinearer Abbildungen. PhD thesis, Universität Konstanz, 1998.
  54. M. Michałek and B. Sturmfels. Invitation to Nonlinear Algebra, volume 211. American Mathematical Society, 2021.
  55. V. Y. Pan. Strassen’s algorithm is not optimal. Trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In 19th Annual Symposium on Foundations of Computer Science (Ann Arbor, Mich., 1978), pages 166–176. IEEE, Long Beach, CA, 1978.
  56. K. Pratt. A stronger connection between the asymptotic rank conjecture and the set cover conjecture. CoRR, abs/2311.02774, 2023.
  57. R. Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):Art. 40, 15, 2013.
  58. F. Romani. Some properties of disjoint sums of tensors related to matrix multiplication. SIAM J. Comput., 11(2):263–267, 1982.
  59. A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10(3):434–455, 1981.
  60. Relative error tensor low rank approximation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2772–2789. SIAM, Philadelphia, PA, 2019.
  61. A. J. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of Edinburgh, 2010.
  62. V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
  63. V. Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication. In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 49–54. IEEE Computer Society, 1986.
  64. V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406–443, 1987.
  65. V. Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math., 384:102–152, 1988.
  66. V. Strassen. Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math., 413:127–180, 1991.
  67. V. Strassen. Algebra and complexity. In First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 429–446. Birkhäuser, Basel, 1994.
  68. V. Strassen. Komplexität und Geometrie bilinearer Abbildungen. Jahresber. Deutsch. Math.-Verein., 107(1):3–31, 2005.
  69. Z. Teitler. Geometric lower bounds for generalized ranks. arXiv preprint arXiv:1406.5145, 2014.
  70. V. Tobler. Spezialisierung und Degeneration von Tensoren. PhD thesis, Universität Konstanz, 1991.
  71. V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd [extended abstract]. In STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing, pages 887–898. ACM, New York, 2012.
  72. A. Wigderson and J. Zuiddam. Asymptotic spectra: Theory, applications and extensions. Manuscript dated October 24, 2023; available at https://www.math.ias.edu/~avi/PUBLICATIONS/WigdersonZu_Final_Draft_Oct2023.pdf, 2023.
  73. F. L. Zak. Tangents and Secants of Algebraic Varieties, volume 127. American Mathematical Society, 1993.

Summary

We haven't generated a summary for this paper yet.