Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning-Based Approach for a Single Vehicle Persistent Surveillance Problem with Fuel Constraints (2404.06423v3)

Published 9 Apr 2024 in cs.RO, cs.AI, and cs.LG

Abstract: This article presents a deep reinforcement learning-based approach to tackle a persistent surveillance mission requiring a single unmanned aerial vehicle initially stationed at a depot with fuel or time-of-flight constraints to repeatedly visit a set of targets with equal priority. Owing to the vehicle's fuel or time-of-flight constraints, the vehicle must be regularly refueled, or its battery must be recharged at the depot. The objective of the problem is to determine an optimal sequence of visits to the targets that minimizes the maximum time elapsed between successive visits to any target while ensuring that the vehicle never runs out of fuel or charge. We present a deep reinforcement learning algorithm to solve this problem and present the results of numerical experiments that corroborate the effectiveness of this approach in comparison with common-sense greedy heuristics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “Optimal uav route planning for persistent monitoring missions,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 550–566, 2020.
  2. S. K. K. Hari, S. Rathinam, S. Darbha, S. G. Manyam, K. Kalyanam, and D. Casbeer, “Bounds on optimal revisit times in persistent monitoring missions with a distinct and remote service station,” IEEE Transactions on Robotics, vol. 39, no. 2, pp. 1070–1086, 2022.
  3. K. Sundar and S. Rathinam, “Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 1, pp. 287–294, 2013.
  4. K. Sundar, S. Venkatachalam, and S. Rathinam, “Formulations and algorithms for the multiple depot, fuel-constrained, multiple vehicle routing problem,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 6489–6494.
  5. S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in discrete environments: Minimizing the maximum weighted latency between observations,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 138–154, 2014.
  6. L. Yue, R. Yang, Y. Zhang, L. Yu, Z. Wang et al., “Deep reinforcement learning for uav intelligent mission planning,” Complexity, vol. 2022, 2022.
  7. B. Yuksek, M. Umut Demirezen, G. Inalhan, and A. Tsourdos, “Cooperative planning for an unmanned combat aerial vehicle fleet using reinforcement learning,” Journal of Aerospace Information Systems, vol. 18, no. 10, pp. 739–750, 2021.
  8. W. Liu, T. Zhang, S. Huang, and K. Li, “A hybrid optimization framework for uav reconnaissance mission planning,” Computers & Industrial Engineering, vol. 173, p. 108653, 2022.
  9. A. A. Maw, M. Tyan, T. A. Nguyen, and J.-W. Lee, “iada*-rl: Anytime graph-based path planning with deep reinforcement learning for an autonomous uav,” Applied Sciences, vol. 11, no. 9, p. 3948, 2021.
  10. J. Las Fargeas, B. Hyun, P. Kabamba, and A. Girard, “Persistent visitation under revisit constraints,” in 2013 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2013, pp. 952–957.
  11. P. Tokekar and V. Kumar, “Visibility-based persistent monitoring with robot teams,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2015, pp. 3387–3394.
  12. P. Maini, G. Gupta, P. Tokekar, and P. Sujit, “Visibility-based monitoring of a path using a heterogeneous robot team,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 3765–3770.
  13. M. Mishra, P. Poddar, R. Agarwal, J. Chen, P. Tokekar, and P. Sujit, “Multi-agent deep reinforcement learning for persistent monitoring with sensing, communication, and localization constraints,” arXiv preprint arXiv:2109.06831, 2021.
  14. N. Nigam and I. Kroo, “Persistent surveillance using multiple unmanned air vehicles,” in 2008 IEEE Aerospace Conference.   IEEE, 2008, pp. 1–14.
  15. Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-robot area patrol under frequency constraints,” Annals of Mathematics and Artificial Intelligence, vol. 57, pp. 293–320, 2009.
  16. J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events with stochastic arrivals at multiple stations,” in IEEE International Conference on Robotics and Automation, 2014, pp. 5758–5765.
  17. P. Wang, R. Krishnamurti, and K. Gupta, “Generalized watchman route problem with discrete view cost,” International Journal of Computational Geometry & Applications, vol. 20, no. 02, pp. 119–146, 2010.
  18. S. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. Manyam, and D. Casbeer, “The generalized persistent monitoring problem,” in 2019 American Control Conference (ACC), 2019, pp. 2783–2788.
  19. E. Stump and N. Michael, “Multi-robot persistent surveillance planning as a vehicle routing problem,” in 2011 IEEE international conference on automation science and engineering.   IEEE, 2011, pp. 569–575.
  20. S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Casbeer, “Optimal uav route planning for persistent monitoring missions,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 550–566, 2021.
  21. C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of ppo in cooperative multi-agent games,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 611–24 624, 2022.
  22. S. Huang and S. Ontañón, “A closer look at invalid action masking in policy gradient algorithms,” CoRR, vol. abs/2006.14171, 2020.
  23. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com