Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sustainable and Precision Agriculture with the Internet of Everything (IoE) (2404.06341v2)

Published 9 Apr 2024 in eess.SP

Abstract: The accelerated pace of global population growth underscores the crucial role of the agricultural sector in mitigating food scarcity, as well as in supporting livelihoods through employment opportunities and bolstering national economies. This sector faces several critical challenges, including resource depletion, socioeconomic issues, gaps in technology and innovation, and the impact of climate change. The introduction of mechanization has significantly transformed agriculture by enhancing sustainability and increasing the productivity of crops. Recently, traditional farming methods have been supplemented with advanced technologies steering the industry towards precision agriculture. The convergence of these advanced technologies has facilitated the automation of various tasks such as water management, crop monitoring, disease management, and harvesting. The concept of Internet of Everything (IoE) has gained traction due to its holistic approach towards integrating various IoT specializations, called IoXs where X referring to a specific domain. This includes areas like the Internet of Sensors (IoS), Internet of Vehicles (IoV), Internet of Energy (IoEn), Internet of Space Things (IoST), Industrial Internet of Things (IIoT), and Internet of Drones (IoD). This paper explores the potential of the Internet of Everything (IoE) in revolutionizing agricultural systems. The focus is on assessing the impact of cutting-edge and novel technologies, such as 6G, molecular communication (MC), Internet of Nano Things (IoNT), Internet of Bio-Nano Things (IoBNT), Internet of Fungus, and designer phages, in significantly improving agricultural yield, efficiency, and productivity. Additionally, the potential of these technologies is evaluated in terms of their applicability, associated challenges, and future research directions within the realm of precision agriculture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (321)
  1. A. Chandavale, A. Dixit, A. Khedkar, and R. B. Kolekar, “Automated systems for smart agriculture,” in 2019 IEEE Pune Section International Conference (PuneCon), 2019, pp. 1–6.
  2. S. Bowles and J.-K. Choi, “The neolithic agricultural revolution and the origins of private property,” Journal of Political Economy, vol. 127, no. 5, pp. 2186–2228, 2019. [Online]. Available: https://doi.org/10.1086/701789
  3. G. Clark, “The agricultural revolution and the industrial revolution: England, 1500-1912,” 01 2002.
  4. A. Ameen and S. Raza, “Green revolution: A review,” International Journal of Advances in Scientific Research, vol. 3, p. 129, 01 2018.
  5. G. P. Kaur, J. Birla, and J. Ahlawat, “Generations of wireless technology,” International Journal of Computer Science and Management Studies, vol. 11, no. 02, pp. 435–441, 2011.
  6. L. Afolabi, E. Olawole, F. Taofeek-Ibrahim, T. Mohammed, and O. Shogo, “Evolution of wireless networks technologies, history and emerging technology of 5g wireless network: a review,” J. Telecommun. Syst. Manage., vol. 7, p. 1000176, 2018.
  7. M. Attaran, “The impact of 5g on the evolution of intelligent automation and industry digitization,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, 02 2021.
  8. L. Philip, C. Cottrill, J. Farrington, F. Williams, and F. Ashmore, “The digital divide: Patterns, policy and scenarios for connecting the ‘final few’ in rural communities across great britain,” Journal of Rural Studies, vol. 54, pp. 386–398, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0743016716306799
  9. D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 8, pp. 1341–1365, 2008.
  10. I.-F. Chen, X.-J. Chen, and C.-M. Peng, “Advanting throughput antenna structure for 4×4444\times 44 × 4 mimo wifi 6 mini pc applications,” in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2020, pp. 1419–1420.
  11. E. Said Mohamed, A. Belal, S. Kotb Abd-Elmabod, M. A. El-Shirbeny, A. Gad, and M. B. Zahran, “Smart farming for improving agricultural management,” The Egyptian Journal of Remote Sensing and Space Science, vol. 24, no. 3, Part 2, pp. 971–981, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1110982321000582
  12. A. Cilfone, L. Davoli, L. Belli, and G. Ferrari, “Wireless mesh networking: An iot-oriented perspective survey on relevant technologies,” Future Internet, vol. 11, no. 4, 2019. [Online]. Available: https://www.mdpi.com/1999-5903/11/4/99
  13. Why wireless standards are so important in today’s world. [Online]. Available: https://www.itu.int/hub/2019/03/why-wireless-standards-are-so-important-in-todays-world/
  14. S. Azfar, A. Nadeem, and A. Basit, “Pest detection and control techniques using wireless sensor network: A review,” Journal of Entomology and Zoology Studies, vol. 3, no. 2, pp. 92–99, 2015.
  15. S. T. Warpe and R. S. Pippal, “A study of fertilizer distribution system for agriculture using wireless sensor network,” International Journal of Computer Applications, vol. 147, no. 2, pp. 43–46, 2016.
  16. G. Martinović and J. Simon, “Greenhouse microclimatic environment controlled by a mobile measuring station,” Njas-wageningen journal of life sciences, vol. 70, pp. 61–70, 2014.
  17. E. Oriwoh, P. Sant, and G. Epiphaniou, “Guidelines for internet of things deployment approaches – the thing commandments,” Procedia Computer Science, vol. 21, pp. 122–131, 2013, the 4th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2013) and the 3rd International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050913008119
  18. B. Subramanian, K. Nathani, and S. Rathnasamy, “Iot technology, applications and challenges: A contemporary survey,” Wireless Personal Communications, vol. 108, 09 2019.
  19. L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128610001568
  20. J. Wang, M. K. Lim, C. Wang, and M.-L. Tseng, “The evolution of the internet of things (iot) over the past 20 years,” Computers & Industrial Engineering, vol. 155, p. 107174, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360835221000784
  21. N. Khan, R. L. Ray, G. R. Sargani, M. Ihtisham, M. Khayyam, and S. Ismail, “Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture,” Sustainability, vol. 13, no. 9, 2021. [Online]. Available: https://www.mdpi.com/2071-1050/13/9/4883
  22. M. S. Farooq, S. Riaz, A. Abid, T. Umer, and Y. B. Zikria, “Role of iot technology in agriculture: A systematic literature review,” Electronics, vol. 9, no. 2, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/2/319
  23. O. B. Akan, E. Dinc, M. Kuscu, O. Cetinkaya, and B. A. Bilgin, “Internet of everything (ioe)-from molecules to the universe,” IEEE Communications Magazine, 2023.
  24. S. Qazi, B. A. Khawaja, and Q. U. Farooq, “Iot-equipped and ai-enabled next generation smart agriculture: A critical review, current challenges and future trends,” IEEE Access, vol. 10, pp. 21 219–21 235, 2022.
  25. G. H. Adday, S. K. Subramaniam, Z. A. Zukarnain, and N. Samian, “Fault tolerance structures in wireless sensor networks (wsns): Survey, classification, and future directions,” Sensors, vol. 22, no. 16, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/16/6041
  26. M. S. Kang, J.-S. Jang, and K. Lee, “Development of robust sensor node for internet of things,” in 2013 International Conference on IT Convergence and Security (ICITCS), 2013, pp. 1–4.
  27. M. R. M. Kassim, “Iot applications in smart agriculture: Issues and challenges,” in 2020 IEEE Conference on Open Systems (ICOS), 2020, pp. 19–24.
  28. A. Mitra, S. L. Vangipuram, A. K. Bapatla, V. K. Bathalapalli, S. P. Mohanty, E. Kougianos, and C. Ray, “Everything you wanted to know about smart agriculture,” arXiv preprint arXiv:2201.04754, 2022.
  29. J. M. Talavera, L. E. Tobón, J. A. Gómez, M. A. Culman, J. M. Aranda, D. T. Parra, L. A. Quiroz, A. Hoyos, and L. E. Garreta, “Review of iot applications in agro-industrial and environmental fields,” Computers and Electronics in Agriculture, vol. 142, pp. 283–297, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169917304155
  30. M. Akkaş and R. Sokullu, “An iot-based greenhouse monitoring system with micaz motes,” Procedia Computer Science, vol. 113, pp. 603–608, 12 2017.
  31. A. P. D. S. Kumar Selvaperumal, R. Lakshmanan, M. Guedi, S. Perumal, and R. Abdulla, “Automated smart hydroponics system using internet of things,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, p. 6389, 12 2020.
  32. W. Mao, Z. Zhao, Z. Chang, G. Min, and W. Gao, “Energy-efficient industrial internet of things: Overview and open issues,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7225–7237, 2021.
  33. S. Moore, C. D. Nugent, I. Cleland, and S. Zhang, “Impact analysis of erroneous data on iot reliability,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 1908–1915.
  34. C. Kamienski, J.-P. Soininen, M. Taumberger, R. Dantas, A. Toscano, T. Salmon Cinotti, R. Filev Maia, and A. Torre Neto, “Smart water management platform: Iot-based precision irrigation for agriculture,” Sensors, vol. 19, no. 2, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/2/276
  35. S. R. Krishnan, M. K. Nallakaruppan, R. Chengoden, S. Koppu, M. Iyapparaja, J. Sadhasivam, and S. Sethuraman, “Smart water resource management using artificial intelligence—A Review,” Sustainability, vol. 14, no. 20, 2022. [Online]. Available: https://www.mdpi.com/2071-1050/14/20/13384
  36. L. García, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, “Iot-based smart irrigation systems: An overview on the recent trends on sensors and iot systems for irrigation in precision agriculture,” Sensors, vol. 20, no. 4, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/4/1042
  37. T. Wang, X. Xu, C. Wang, Z. Li, and D. Li, “From smart farming towards unmanned farms: A new mode of agricultural production,” Agriculture, vol. 11, no. 2, 2021. [Online]. Available: https://www.mdpi.com/2077-0472/11/2/145
  38. K. Bhargava and S. Ivanov, “Collaborative edge mining for predicting heat stress in dairy cattle,” 03 2016, pp. 1–6.
  39. N. Kalatzis, M. Avgeris, D. Dechouniotis, K. Papadakis-Vlachopapadopoulos, I. Roussaki, and S. Papavassiliou, “Edge computing in iot ecosystems for uav-enabled early fire detection,” in 2018 IEEE international conference on smart computing (SMARTCOMP).   IEEE, 2018, pp. 106–114.
  40. L. G, C. Rani, and G. Pugalendhi, “An automated low cost iot based fertilizer intimation system for smart agriculture,” Sustainable Computing: Informatics and Systems, vol. 28, 01 2019.
  41. A. Rehman, T. Saba, M. Kashif, S. M. Fati, S. A. Bahaj, and H. Chaudhry, “A revisit of internet of things technologies for monitoring and control strategies in smart agriculture,” Agronomy, vol. 12, no. 1, 2022. [Online]. Available: https://www.mdpi.com/2073-4395/12/1/127
  42. J. Astill, R. A. Dara, E. D. Fraser, B. Roberts, and S. Sharif, “Smart poultry management: Smart sensors, big data, and the internet of things,” Computers and Electronics in Agriculture, vol. 170, p. 105291, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169918316363
  43. V. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, “scrop: A novel device for sustainable automatic disease prediction, crop selection, and irrigation in internet-of-agro-things for smart agriculture,” IEEE Sensors Journal, vol. 21, no. 16, pp. 17 525–17 538, 2021.
  44. P. Joshi, D. Das, V. Udutalapally, M. K. Pradhan, and S. Misra, “Ricebios: Identification of biotic stress in rice crops using edge-as-a-service,” IEEE Sensors Journal, vol. 22, no. 5, pp. 4616–4624, 2022.
  45. S. T. Oliver, A. González-Pérez, and J. H. Guijarro, “An iot proposal for monitoring vineyards called senviro for agriculture,” in Proceedings of the 8th International Conference on the Internet of Things, ser. IOT ’18.   New York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3277593.3277625
  46. H. Orchi, M. Sadik, and M. Khaldoun, “On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey,” Agriculture, vol. 12, no. 1, 2022. [Online]. Available: https://www.mdpi.com/2077-0472/12/1/9
  47. M. Ayaz, M. Ammad-uddin, I. Baig, and e.-H. M. Aggoune, “Wireless sensor’s civil applications, prototypes, and future integration possibilities: A review,” IEEE Sensors Journal, vol. 18, no. 1, pp. 4–30, 2018.
  48. N. Chamara, M. D. Islam, G. F. Bai, Y. Shi, and Y. Ge, “Ag-iot for crop and environment monitoring: Past, present, and future,” Agricultural systems, vol. 203, p. 103497, 2022.
  49. S. V, “Internet-of-things (iot) based smart agriculture in india - an overview,” Journal of ISMAC, vol. 3, pp. 1–15, 02 2021.
  50. A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta, “Securing iiot using defence-in-depth: Towards an end-to-end secure industry 4.0,” Journal of Manufacturing Systems, vol. 57, pp. 367–378, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0278612520301801
  51. S. Yadav, D. Garg, and S. Luthra, “Selection of third-party logistics services for internet of things-based agriculture supply chain management,” International Journal of Logistics Systems and Management, vol. 35, no. 2, pp. 204–230, 2020.
  52. ——, “Analysing challenges for internet of things adoption in agriculture supply chain management,” International Journal of Industrial and Systems Engineering, vol. 36, no. 1, pp. 73–97, 2020.
  53. B. Aljabhan, “A comprehensive analysis on the adoption of iot with logistics and supply chain management,” in 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA), 2022, pp. 1–6.
  54. D. Miraz, M. Ali, P. Excell, and R. Picking, “Internet of nano-things, things and everything: Future growth trends,” Future Internet, vol. 10, 07 2018.
  55. A. Nayyar, V. Puri, and D.-N. Le, “Internet of nano things (iont): Next evolutionary step in nanotechnology,” Nanoscience and Nanotechnology, vol. 7, no. 1, pp. 4–8, 2017.
  56. J. Martinez, M. Evangelopoulos, C. Chiappini, X. Liu, M. Ferrari, and E. Tasciotti, “Degradation and biocompatibility of multistage nanovectors in physiological systems,” Journal of Biomedical Materials Research Part A, vol. 102, 10 2014.
  57. J. S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, and S. Duhan, “Nanotechnology: The new perspective in precision agriculture,” Biotechnology Reports, vol. 15, pp. 11–23, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2215017X16301400
  58. S. W. Fox, “How did life begin?” Science, vol. 132, no. 3421, pp. 200–208, 1960. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.132.3421.200
  59. E. Sasson, R. V. O. Pinhasi, S. Margel, and L. Klipcan, “Engineering and use of proteinoid polymers and nanocapsules containing agrochemicals,” Scientific reports, vol. 10, no. 1, p. 9171, 2020.
  60. S. Sharma, P. Mougoyannis, G. Tarabella, and A. Adamatzky, “A review on the protocols for the synthesis of proteinoids,” arXiv preprint arXiv:2212.02261, 2022.
  61. C. B. Subramanian, N. Ranjan Nayak, N. K. G. N, D. K. Mohanty, S. Rout, and S. K. Nandha Kumar, “Use of nanotechnology sensors for sustainable agriculture,” in 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022, pp. 638–643.
  62. M. A. Rojas-Cessa, J. Pereira, and S. Santra, “Antimicrobial assessment of cellulose-copper-silica nanocomposites for crop disease management,” in 2022 IEEE MIT Undergraduate Research Technology Conference (URTC), 2022, pp. 1–5.
  63. X. Wu, L. Li, Q. Kou, A. Liu, and Z. Liao, “Effect of nanomaterial on improvement of water quality,” in 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010, pp. 1–5.
  64. T. Komarova, I. Ilina, M. Taliansky, and N. Ershova, “Nanoplatforms for the delivery of nucleic acids into plant cells,” International Journal of Molecular Sciences, vol. 24, no. 23, 2023. [Online]. Available: https://www.mdpi.com/1422-0067/24/23/16665
  65. O. B. Akan, H. Ramezani, T. Khan, N. A. Abbasi, and M. Kuscu, “Fundamentals of molecular information and communication science,” Proceedings of the IEEE, vol. 105, no. 2, pp. 306–318, 2017.
  66. M. Kuscu, E. Dinc, B. A. Bilgin, H. Ramezani, and O. B. Akan, “Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1302–1341, 2019.
  67. S. Ahmed, J. Hu, S. M. Z. A. Naqvi, Y. Zhang, L. Linze, and A. M. Iderawumi, “Molecular communication network and its applications in crop sciences,” Planta, vol. 255, no. 6, p. 128, 2022. [Online]. Available: https://doi.org/10.1007/s00425-022-03903-5
  68. B. D. Unluturk and I. F. Akyildiz, “An end-to-end model of plant pheromone channel for long range molecular communication,” IEEE Transactions on NanoBioscience, vol. 16, no. 1, pp. 11–20, 2017.
  69. H. Awan, R. S. Adve, N. Wallbridge, C. Plummer, and A. W. Eckford, “Modeling the role of inter-cellular communication in modulating photosynthesis in plants,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 7, no. 2, pp. 94–99, 2021.
  70. M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on internet of things (iot), internet of everything (ioe) and internet of nano things (iont),” in 2015 Internet Technologies and Applications (ITA), 2015, pp. 219–224.
  71. Y. Li, L. Lin, W. Guo, D. Zhang, and K. Yang, “Error performance and mutual information for iont interface system,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9831–9842, 2022.
  72. A. O. Balghusoon and S. Mahfoudh, “Routing protocols for wireless nanosensor networks and internet of nano things: A comprehensive survey,” IEEE Access, vol. 8, pp. 200 724–200 748, 2020.
  73. I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, “The internet of bio-nano things,” IEEE Communications Magazine, vol. 53, no. 3, pp. 32–40, 2015.
  74. M. Kuscu and B. Unluturk, “Internet of bio-nano things: A review of applications, enabling technologies and key challenges,” ITU Journal on Future and Evolving Technologies, vol. 2, pp. 1–24, 12 2021.
  75. H. Awan, R. Adve, N. Wallbridge, C. Plummer, and A. Eckford, “Information theoretic based comparative analysis of different communication signals in plants,” IEEE Access, vol. PP, pp. 1–1, 08 2019.
  76. R. GhoshMoulick, S. Das, N. Debnath, and K. Bandyopadhyay, “Potential use of nanotechnology in sustainable and ‘smart’ agriculture: advancements made in the last decade,” Plant Biotechnology Reports, vol. 14, 07 2020.
  77. M. N. Al-Rawahi, T. Sharma, and P. Palanisamy, “Internet of nanothings: Challenges & opportunities,” in 2018 Majan International Conference (MIC), 2018, pp. 1–5.
  78. F. Dressler and F. Kargl, “Security in nano communication: Challenges and open research issues,” in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 6183–6187.
  79. P. Trivedi, J. E. Leach, S. G. Tringe, T. Sa, and B. K. Singh, “Plant-microbiome interactions: from community assembly to plant health,” Nature Reviews Microbiology, vol. 18, no. 11, pp. 607–621, 2020, epub 2020 Aug 12. Erratum in: Nat Rev Microbiol. 2021 Jan;19(1):72. PMID: 32788714.
  80. R. S. Peixoto, D. M. Harkins, and K. E. Nelson, “Advances in microbiome research for animal health,” Annual Review of Animal Biosciences, vol. 9, pp. 289–311, 2021, epub 2020 Dec 14. PMID: 33317323.
  81. G. P. C. Salmond and P. C. Fineran, “A century of the phage: past, present and future,” Nature Reviews Microbiology, vol. 13, no. 12, pp. 777–786, 2015. [Online]. Available: https://doi.org/10.1038/nrmicro3564
  82. J. Doss, K. Culbertson, D. Hahn, J. Camacho, and N. Barekzi, “A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms,” Viruses, vol. 9, no. 3, 2017. [Online]. Available: https://www.mdpi.com/1999-4915/9/3/50
  83. A. Górski, R. Międzybrodzki, M. Łobocka, A. Głowacka-Rutkowska, A. Bednarek, J. Borysowski, E. Jończyk-Matysiak, M. Łusiak Szelachowska, B. Weber-Dąbrowska, N. Bagińska, S. Letkiewicz, K. Dąbrowska, and J. Scheres, “Phage therapy: What have we learned?” Viruses, vol. 10, no. 6, 2018. [Online]. Available: https://www.mdpi.com/1999-4915/10/6/288
  84. A. S. Nilsson, “Phage therapy—constraints and possibilities,” Upsala Journal of Medical Sciences, vol. 119, no. 2, pp. 192–198, 2014, pMID: 24678769. [Online]. Available: https://doi.org/10.3109/03009734.2014.902878
  85. A. Ross, S. Ward, and P. Hyman, “More is better: Selecting for broad host range bacteriophages,” Frontiers in Microbiology, vol. 7, 2016. [Online]. Available: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2016.01352
  86. J. Ramos-Vivas, M. Elexpuru-Zabaleta, M. L. Samano, A. P. Barrera, T. Y. Forbes-Hernández, F. Giampieri, and M. Battino, “Phages and enzybiotics in food biopreservation,” Molecules, vol. 26, no. 17, 2021. [Online]. Available: https://www.mdpi.com/1420-3049/26/17/5138
  87. M. Bates, “Leveraging bacteriophages in vaccine development,” IEEE Pulse, vol. 13, no. 3, pp. 9–13, 2022.
  88. S. A. Strathdee, G. F. Hatfull, V. K. Mutalik, and R. T. Schooley, “Phage therapy: From biological mechanisms to future directions,” Cell, vol. 186, no. 1, pp. 17–31, 2023.
  89. T. Farooq, M. D. Hussain, M. T. Shakeel, M. Tariqjaveed, M. N. Aslam, S. A. H. Naqvi, R. Amjad, Y. Tang, X. She, and Z. He, “Deploying viruses against phytobacteria: Potential use of phage cocktails as a multifaceted approach to combat resistant bacterial plant pathogens,” Viruses, vol. 14, no. 2, p. 171, 2022.
  90. E. M. Halawa, “Challenges of bacteriophages application in controlling bacterial plant diseases and how to overcome them,” Journal of Genetic Engineering and Biotechnology, vol. 21, no. 1, p. 98, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1687157X23010247
  91. D. Holtappels, K. Fortuna, R. Lavigne, and J. Wagemans, “The future of phage biocontrol in integrated plant protection for sustainable crop production,” Current Opinion in Biotechnology, vol. 68, pp. 60–71, 2021, Systems Biology • Nanobiotechnol. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0958166920301233
  92. Y. Huang, W. Wang, Z. Zhang, Y. Gu, A. Huang, J. Wang, and H. Hao, “Phage products for fighting antimicrobial resistance,” Microorganisms, vol. 10, no. 7, 2022. [Online]. Available: https://www.mdpi.com/2076-2607/10/7/1324
  93. H. Sheng, H. Knecht, I. Kudva, and C. Hovde, “Application of bacteriophages to control intestinal escherichia coli o157:h7 levels in ruminants,” Applied and environmental microbiology, vol. 72, pp. 5359–66, 01 2006.
  94. N. Lee and D. Harris, “The effect of bacteriophage treatment to reduce the rapid dissemination of salmonella typhimurium in pigs,” 01 2000.
  95. V. Economou and P. Gousia, “Agriculture and food animals as a source of antimicrobial-resistant bacteria,” Infection and Drug Resistance, vol. 8, pp. 49–61, 2015, pMID: 25878509. [Online]. Available: https://www.tandfonline.com/doi/abs/10.2147/IDR.S55778
  96. B. K. Chan, S. T. Abedon, and C. Loc-Carrillo, “Phage cocktails and the future of phage therapy,” Future Microbiology, vol. 8, no. 6, pp. 769–783, 2013, pMID: 23701332. [Online]. Available: https://doi.org/10.2217/fmb.13.47
  97. O. O. Ikusika, C. Haruzivi, and T. C. Mpendulo, “Alternatives to the use of antibiotics in animal production,” in Antibiotics and Probiotics in Animal Food, A. A. Kamboh, Ed.   Rijeka: IntechOpen, 2022, ch. 4. [Online]. Available: https://doi.org/10.5772/intechopen.105922
  98. C. Ferriol-González and P. Domingo-Calap, “Phage therapy in livestock and companion animals,” Antibiotics, vol. 10, no. 5, 2021. [Online]. Available: https://www.mdpi.com/2079-6382/10/5/559
  99. A. Brix, M. Cafora, M. Aureli, and A. Pistocchi, “Animal models to translate phage therapy to human medicine,” International Journal of Molecular Sciences, vol. 21, no. 10, 2020. [Online]. Available: https://www.mdpi.com/1422-0067/21/10/3715
  100. M. Cieślik, N. Bagińska, A. Górski, and E. Jończyk-Matysiak, “Animal models in the evaluation of the effectiveness of phage therapy for infections caused by gram-negative bacteria from the eskape group and the reliability of its use in humans,” Microorganisms, vol. 9, no. 2, 2021. [Online]. Available: https://www.mdpi.com/2076-2607/9/2/206
  101. M. Skurnik, M. Pajunen, and S. Kiljunen, “Biotechnology challenges of phage therapy,” Biotechnology letters, vol. 29, pp. 995–1003, 08 2007.
  102. E. Kutter, D. De Vos, G. Gvasalia, Z. Alavidze, L. Gogokhia, S. Kuhl, and S. Abedon, “Phage therapy in clinical practice: treatment of human infections,” Current Pharmaceutical Biotechnology, vol. 11, no. 1, pp. 69–86, Jan. 2010.
  103. C. Loc-Carrillo and S. Abedon, “Pros and cons of phage therapy,” Bacteriophage, vol. 1, no. 2, pp. 111–114, Mar 2011.
  104. M. Elbreki, R. Ross, C. Hill, J. O’Mahony, O. Mcauliffe, and A. Coffey, “Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment,” Journal of Viruses, vol. 2014, 03 2014.
  105. W. Hussain, X. Yang, M. Ullah, H. Wang, A. Aziz, F. Xu, M. Asif, M. W. Ullah, and S. Wang, “Genetic engineering of bacteriophages: Key concepts, strategies, and applications,” Biotechnology Advances, vol. 64, p. 108116, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S073497502300023X
  106. B. A. Chin, S. Horikawa, Y. Liu, S. Du, I.-H. Chen, M. S. Crumpler, S. R. Best, H. C. Wikle, and Z. Cheng, “Rapid detection of small quantities of specific bacteria using phage-based wireless biosensors,” in 2016 10th International Conference on Sensing Technology (ICST), 2016, pp. 1–5.
  107. J. F. López, J. A. L. Sotelo, D. Leite, and C. Peña-Reyes, “Applying one-class learning algorithms to predict phage-bacteria interactions,” in 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2019, pp. 1–6.
  108. L. Fernández, D. Gutiérrez, A. Rodriguez, and P. García, “Application of bacteriophages in the agro-food sector: A long way toward approval,” Frontiers in Cellular and Infection Microbiology, vol. 8, p. 296, 08 2018.
  109. F. Molina, M. Ramírez, R. Tabla, I. Roa, A. Simancas, and J. Rebollo Feria, “A new pipeline for designing phage cocktails based on phage-bacteria infection networks,” Frontiers in Microbiology, vol. 12, 01 2021.
  110. K. McNair, B. Bailey, and R. Edwards, “Phacts, a computational approach to classifying the lifestyle of phages,” Bioinformatics, vol. 28, no. 5, pp. 614–618, Mar 2012.
  111. G. F. Hatfull, “Bacteriophage genomics,” Current opinion in microbiology, vol. 11, no. 5, pp. 447–453, 2008.
  112. M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, and K. R. Pardesi, “Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: A review,” Frontiers in Microbiology, vol. 10, 2019. [Online]. Available: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00539
  113. Y. Y. Song, M. Ye, C. Li, X. He, K. Zhu-Salzman, R. L. Wang, Y. J. Su, S. M. Luo, and R. S. Zeng, “Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants,” Scientific Reports, vol. 4, no. 1, p. 3915, 2014. [Online]. Available: https://doi.org/10.1038/srep03915
  114. K. E. French, “Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health,” Frontiers in Microbiology, vol. 8, 2017. [Online]. Available: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.01403
  115. S. A. Christensen and M. V. Kolomiets, “The lipid language of plant–fungal interactions,” Fungal Genetics and Biology, vol. 48, no. 1, pp. 4–14, 2011.
  116. M. T. Tarkka, A. Sarniguet, and P. Frey-Klett, “Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions,” Current genetics, vol. 55, pp. 233–243, 2009.
  117. A. Tavanti, J. Naglik, and N. Osherov, “Host-fungal interactions: Pathogenicity versus immunity,” International journal of microbiology, vol. 2012, p. 562480, 05 2012.
  118. M. Gorzelak, A. Asay, B. Pickles, and S. Simard, “Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities,” AoB plants, vol. 7, 05 2015.
  119. N. Sirimorok, R. M. Paweroi, A. A. Arsyad, and M. Köppen, “Smart farm security by combining iot sensor network and virtualized mycelium network,” Sensors, vol. 23, no. 21, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/21/8689
  120. A. F. Fall, G. Nakabonge, J. Ssekandi, H. Founoune-Mboup, O. Apori, A. Ndiaye, A. Badji, and K. Ngom, “Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil,” Frontiers in Fungal Biology, vol. 3, p. 723892, 03 2022.
  121. S. Savary, L. Willocquet, S. J. Pethybridge, P. Esker, N. McRoberts, and A. Nelson, “The global burden of pathogens and pests on major food crops,” Nature ecology & evolution, vol. 3, no. 3, pp. 430–439, 2019.
  122. S. F. S. Ab Rahman, E. Singh, C. M. Pieterse, and P. M. Schenk, “Emerging microbial biocontrol strategies for plant pathogens,” Plant Science, vol. 267, pp. 102–111, 2018.
  123. K. M. Thambugala, D. A. Daranagama, A. J. Phillips, S. D. Kannangara, and I. Promputtha, “Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens,” Frontiers in cellular and infection microbiology, vol. 10, p. 604923, 2020.
  124. P. K. Mukherjee, A. Mendoza-Mendoza, S. Zeilinger, and B. A. Horwitz, “Mycoparasitism as a mechanism of trichoderma-mediated suppression of plant diseases,” Fungal Biology Reviews, vol. 39, pp. 15–33, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1749461321000567
  125. M. A. Alghuthaymi, K. A. Abd-Elsalam, H. M. AboDalam, F. K. Ahmed, M. Ravichandran, A. Kalia, and M. Rai, “Trichoderma: An eco-friendly source of nanomaterials for sustainable agroecosystems,” Journal of Fungi, vol. 8, no. 4, 2022. [Online]. Available: https://www.mdpi.com/2309-608X/8/4/367
  126. V. Kumar, B. Koul, P. Taak, D. Yadav, and M. Song, “Journey of trichoderma from pilot scale to mass production: A review,” Agriculture, vol. 13, no. 10, 2023. [Online]. Available: https://www.mdpi.com/2077-0472/13/10/2022
  127. S. W. Simard and D. M. Durall, “Mycorrhizal networks: a review of their extent, function, and importance,” Canadian Journal of Botany, vol. 82, no. 8, pp. 1140–1165, 2004. [Online]. Available: https://doi.org/10.1139/b04-116
  128. T. C. Sarker, M. Zotti, Y. Fang, F. Giannino, S. Mazzoleni, G. Bonanomi, Y. Cai, and S. Chang, “Soil aggregation in relation to organic amendment: a synthesis,” Journal of Soil Science and Plant Nutrition, vol. 22, 03 2022.
  129. A. Adamatzky, A. Gandia, P. Ayres, and H. Wosten, “Adaptive fungal architectures,” pp. 66–77, 02 2021.
  130. Y. R. Kafle, K. Mahmud, S. Morsalin, and G. E. Town, “Towards an internet of energy,” in 2016 IEEE International Conference on Power System Technology (POWERCON), 2016, pp. 1–6.
  131. M. A. Hannan, M. Faisal, P. J. Ker, L. Mun, K. Parvin, T. M. I. Mahlia, and F. Blaabjerg, “A review of internet of energy based building energy management systems: Issues and recommendations,” IEEE Access, vol. PP, pp. 1–1, 07 2018.
  132. O. B. Akan, O. Cetinkaya, C. Koca, and M. Ozger, “Internet of hybrid energy harvesting things,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 736–746, 2018.
  133. O. Cetinkaya and O. B. Akan, “Electric-field energy harvesting from lighting elements for battery-less internet of things,” IEEE Access, vol. 5, pp. 7423–7434, 2017.
  134. ——, “Electric-field energy harvesting in wireless networks,” IEEE Wireless Communications, vol. 24, no. 2, pp. 34–41, 2017.
  135. M. Ozger, O. Çetinkaya, and O. Akan, “Energy harvesting cognitive radio networking for iot-enabled smart grid,” Mobile Networks and Applications, vol. 23, 10 2017.
  136. O. Cetinkaya, E. Dinc, C. Koca, G. V. Merrett, and O. B. Akan, “Energy-neutral wireless-powered networks,” IEEE Wireless Communications Letters, vol. 8, no. 5, pp. 1373–1376, 2019.
  137. M.-L. Ku, W. Li, Y. Chen, and K. Liu, “Advances in energy harvesting communications: Past, present, and future challenges,” IEEE Communications Surveys & Tutorials, vol. 18, pp. 1–1, 11 2015.
  138. T. Howe Cheng, K. Bc, C. Uttraphan, and H. Yee, “A review on energy harvesting potential from living plants: Future energy resource,” International Journal of Renewable Energy Research, vol. 8, pp. 2398–2414, 12 2018.
  139. J. Matiko, N. Grabham, S. Beeby, and M. Tudor, “Review of the application of energy harvesting in buildings,” Measurement Science and Technology, vol. 25, 11 2013.
  140. F. Akhtar and M. H. Rehmani, “Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review,” Renewable and Sustainable Energy Reviews, vol. 45, 05 2015.
  141. S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Survey and implications,” IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 443–461, 2011.
  142. R. Moghe, Y. Yang, F. Lambert, and D. Divan, “A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications,” 10 2009, pp. 3550 – 3557.
  143. R. Moghe, F. C. Lambert, and D. Divan, “Smart “stick-on” sensors for the smart grid,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 241–252, 2012.
  144. I. Vendik, I. Steblevska, V. Gerasimov, S. Dudnikov, L. Selivanov, and A. Uhov, “Energy harvesting for wireless sensors from power lines electric field,” 09 2017, pp. 125–128.
  145. R. Xu, R. Send, I. Paprotny, R. White, and P. Wright, “Miniature self-powered stick-on wireless sensor node for monitoring of overhead power lines,” 09 2013, pp. 2672–2675.
  146. M. E. Thene and T. N. Mathaba, “Analysing the design of a solar energy harvesting wireless sensor node for agricultural applications,” in 2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 2022, pp. 1–6.
  147. O. Gulec, E. Haytaoglu, and S. Tokat, “A novel distributed cds algorithm for extending lifetime of wsns with solar energy harvester nodes for smart agriculture applications,” IEEE Access, vol. 8, pp. 58 859–58 873, 2020.
  148. M. Saxena and S. Dutta, “Improved the efficiency of iot in agriculture by introduction optimum energy harvesting in wsn,” in 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), 2020, pp. 1–5.
  149. A. Chel and G. Kaushik, “Renewable energy for sustainable agriculture,” Agronomy for sustainable development, vol. 31, pp. 91–118, 2011.
  150. K. Guha, “Rf energy harvesting in agriculture,” in 8th all India peoples’ technology congress, 2011.
  151. S. Khernane, S. Bouam, and C. Arar, “Renewable energy harvesting for wireless sensor networks in precision agriculture,” International Journal of Networked and Distributed Computing, pp. 1–9, 2024.
  152. T. Sanislav, G. D. Mois, S. Zeadally, and S. C. Folea, “Energy harvesting techniques for internet of things (iot),” IEEE Access, vol. 9, pp. 39 530–39 549, 2021.
  153. D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, “Sensing, computing, and communications for energy harvesting iots: A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1222–1250, 2020.
  154. S. Zeadally, F. Shaikh, A. Talpur, and Q. Sheng, “Design architectures for energy harvesting in the internet of things,” Renewable and Sustainable Energy Reviews, vol. 128, p. 109901, 08 2020.
  155. Z. Mahmood, “Connected vehicles in the iov: Concepts, technologies and architectures,” in Connected vehicles in the internet of things: concepts, technologies and frameworks for the IoV.   Springer, 2020, pp. 3–18.
  156. J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing for the internet of vehicles,” Proceedings of the IEEE, vol. 108, no. 2, pp. 246–261, 2019.
  157. P. Sewalkar and J. Seitz, “Vehicle-to-pedestrian communication for vulnerable road users: Survey, design considerations, and challenges,” Sensors, vol. 19, no. 2, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/2/358
  158. B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, “Survey on the internet of vehicles: Network architectures and applications,” IEEE Communications Standards Magazine, vol. 4, no. 1, pp. 34–41, 2020.
  159. M. Abu Talib, S. Abbas, Q. Nasir, and M. F. Mowakeh, “Systematic literature review on internet-of-vehicles communication security,” International Journal of Distributed Sensor Networks, vol. 14, no. 12, p. 1550147718815054, 2018.
  160. A. Chowdhury, G. Karmakar, J. Kamruzzaman, and S. Islam, “Trustworthiness of self-driving vehicles for intelligent transportation systems in industry applications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 961–970, 2021.
  161. A. D. Boursianis, M. S. Papadopoulou, P. Diamantoulakis, A. Liopa-Tsakalidi, P. Barouchas, G. Salahas, G. Karagiannidis, S. Wan, and S. K. Goudos, “Internet of things (iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: A comprehensive review,” Internet of Things, vol. 18, p. 100187, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2542660520300238
  162. A. Caruso, S. Chessa, S. Escolar, J. Barba, and J. C. López, “Collection of data with drones in precision agriculture: Analytical model and lora case study,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16 692–16 704, 2021.
  163. P. K. Reddy Maddikunta, S. Hakak, M. Alazab, S. Bhattacharya, T. R. Gadekallu, W. Z. Khan, and Q.-V. Pham, “Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges,” IEEE Sensors Journal, vol. 21, no. 16, pp. 17 608–17 619, 2021.
  164. M. A. Alanezi, M. S. Shahriar, M. B. Hasan, S. Ahmed, Y. A. Sha’aban, and H. R. E. H. Bouchekara, “Livestock management with unmanned aerial vehicles: A review,” IEEE Access, vol. 10, pp. 45 001–45 028, 2022.
  165. C.-J. Chen, Y.-Y. Huang, Y.-S. Li, Y.-C. Chen, C.-Y. Chang, and Y.-M. Huang, “Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying,” IEEE Access, vol. 9, pp. 21 986–21 997, 2021.
  166. M. Yahuza, M. Y. I. Idris, I. B. Ahmedy, A. W. A. Wahab, T. Nandy, N. M. Noor, and A. Bala, “Internet of drones security and privacy issues: Taxonomy and open challenges,” IEEE Access, vol. 9, pp. 57 243–57 270, 2021.
  167. A. Yazdinejad, R. M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, and M. Aledhari, “Enabling drones in the internet of things with decentralized blockchain-based security,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6406–6415, 2021.
  168. W. Yang, S. Wang, X. Yin, X. Wang, and J. Hu, “A review on security issues and solutions of the internet of drones,” IEEE Open Journal of the Computer Society, vol. 3, pp. 96–110, 2022.
  169. N. Islam, M. M. Rashid, F. Pasandideh, B. Ray, S. Moore, and R. Kadel, “A review of applications and communication technologies for internet of things (iot) and unmanned aerial vehicle (uav) based sustainable smart farming,” Sustainability, vol. 13, p. 1821, 02 2021.
  170. I. F. Akyildiz and I. Kak, “The internet of space things/cubesats,” Netwrk. Mag. of Global Internetwkg., vol. 33, no. 5, p. 212–218, sep 2019. [Online]. Available: https://doi.org/10.1109/MNET.2019.1800445
  171. S. R. Mallick, H. K. Apat, R. K. Lenka, M. Ranjan Senapati, S. Sharma, and R. K. Barik, “Blockagro: Towards blockchain assisted iost framework for agricultural sector,” in 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3), 2023, pp. 1–6.
  172. I. Priyadarshini, B. Bhola, R. Kumar, and C. So-In, “A novel cloud architecture for internet of space things (iost),” IEEE Access, vol. 10, pp. 15 118–15 134, 2022.
  173. O. Monje, G. Stutte, G. Goins, D. Porterfield, and G. Bingham, “Farming in space: Environmental and biophysical concerns,” Advances in Space Research, vol. 31, no. 1, pp. 151–167, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0273117702007512
  174. P. Agbaje, A. Anjum, A. Mitra, E. Oseghale, G. Bloom, and H. Olufowobi, “Survey of interoperability challenges in the internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 22 838–22 861, 2022.
  175. J. Wang, W. Wang, D. Wu, T. Lei, D. Liu, P. Li, and S. Su, “Research on business model of internet of vehicles platform based on token economy,” in 2021 2nd International Conference on Big Data Economy and Information Management (BDEIM), 2021, pp. 120–124.
  176. N. Labib, G. Danoy, J. Musial, M. Brust, and P. Bouvry, “A multilayer low-altitude airspace model for uav traffic management,” 11 2019, pp. 57–63.
  177. S. Bhatia, B. Mallikarjuna, D. Gautam, U. Gupta, S. Kumar, and S. Verma, “The future iot: The current generation 5g and next generation 6g and 7g technologies,” in 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), 2023, pp. 212–217.
  178. W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2020.
  179. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6g wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41, 2019.
  180. Z. Qadir, K. Le, N. Saeed, and H. Munawar, “Towards 6g internet of things: Recent advances, use cases, and open challenges,” ICT Express, vol. 9, 06 2022.
  181. Y. Hokazono, H. Kohara, Y. Kishiyama, and T. Asai, “Extreme coverage extension in 6g: Cooperative non-terrestrial network architecture integrating terrestrial networks,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 138–143.
  182. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6g: A comprehensive survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–366, 2021.
  183. I. F. Akyildiz, A. Kak, and S. Nie, “6g and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133 995–134 030, 2020.
  184. Y. Xing, P. Li, and J. Li, “Discussion on 6g network architecture based on evolution,” in 2022 International Conference on Information Processing and Network Provisioning (ICIPNP), 2022, pp. 20–23.
  185. F. Zhang, Y. Zhang, W. Lu, Y. Gao, Y. Gong, and J. Cao, “6g-enabled smart agriculture: A review and prospect,” Electronics, vol. 11, no. 18, 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/18/2845
  186. M. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6g wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open Journal of the Communications Society, vol. PP, pp. 1–1, 07 2020.
  187. K. Prateek, N. K. Ojha, F. Altaf, and S. Maity, “Quantum secured 6g technology-based applications in internet of everything,” Telecommunication Systems, vol. 82, no. 2, pp. 315–344, 2023. [Online]. Available: https://doi.org/10.1007/s11235-022-00979-y
  188. D.-N. Vu, N.-N. Dao, D. Won, and S. Cho, “Potential enabling technologies for 6g mobile communication networks: A recent review,” in 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2023, pp. 631–635.
  189. C. Maraveas, D. Konar, D. K. Michopoulos, K. G. Arvanitis, and K. P. Peppas, “Harnessing quantum computing for smart agriculture: Empowering sustainable crop management and yield optimization,” Computers and Electronics in Agriculture, vol. 218, p. 108680, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169924000711
  190. S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum, vol. 41, no. 7, pp. 58–60, 2004.
  191. M. Usman, S. Ansari, A. Taha, A. Zahid, Q. H. Abbasi, and M. A. Imran, “Terahertz-based joint communication and sensing for precision agriculture: A 6g use-case,” Frontiers in Communications and Networks, vol. 3, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frcmn.2022.836506
  192. A. Zahid, K. Yang, H. Heidari, C. Li, M. Imran, A. Alomainy, and Q. Abbasi, “Terahertz characterisation of living plant leaves for quality of life assessment applications,” 05 2018, pp. 117–120.
  193. Y. Y. Jiang, H. Y. Ge, F. Y. Lian, Y. Zhang, and S. H. Xia, “Application of thz technology to nondestructive detection of agricultural product quality,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 34, no. 8, pp. 2047–52, Aug 2014.
  194. L. T. Wedage, B. Butler, S. Balasubramaniam, Y. Koucheryavy, and J. M. Jornet, “Climate change sensing through terahertz communications: A disruptive application of 6g networks,” 2021.
  195. M. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access, vol. PP, pp. 1–1, 01 2018.
  196. S. Javed, L. Issaoui, S. Cho, and H. Chun, “Utilization of led grow lights for optical wireless communication-based rf-free smart-farming system,” Sensors, vol. 21, no. 20, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/20/6833
  197. V. Matus, V. Guerra, C. Jurado-Verdu, S. Zvanovec, J. Rabadan, and R. Perez-Jimenez, “Design and implementation of an optical camera communication system for wireless sensor networking in farming fields,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021, pp. 1–6.
  198. A. D. S. Putra, O. N. Samijayani, D. Astharini, and A. Syahriar, “Simulation of visible light communication and free space optic for iot using optisystem,” in 2022 International Symposium on Electronics and Smart Devices (ISESD), 2022, pp. 1–5.
  199. M. Sakai, K. Kamohara, H. Iura, H. Nishimoto, K. Ishioka, Y. Murata, M. Yamamoto, A. Okazaki, N. Nonaka, S. Suyama, J. Mashino, A. Okamura, and Y. Okumura, “Experimental field trials on mu-mimo transmissions for high shf wide-band massive mimo in 5g,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2196–2207, 2020.
  200. C.-X. Wang, Y. Xiaohu, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. Thompson, E. Larsson, M. Di Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6g: Visions, requirements, key technologies and testbeds,” IEEE Communications Surveys & Tutorials, vol. PP, pp. 1–1, 01 2023.
  201. R. Dilli, R. Chandra, and D. Jordhana, “Ultra-massive mimo technologies for 6g wireless networks,” Engineered Science, vol. 16, 01 2021.
  202. A. Faisal, H. Sarieddeen, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Ultramassive mimo systems at terahertz bands: Prospects and challenges,” IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 33–42, 2020.
  203. I. F. Akyildiz and J. M. Jornet, “Realizing ultra-massive mimo (1024×1024) communication in the (0.06–10) terahertz band,” Nano Communication Networks, vol. 8, pp. 46–54, 2016, electromagnetic Communication in Nano-scale. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1878778916000107
  204. S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-wave massive mimo communication for future wireless systems: A survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 836–869, 2017.
  205. Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, M. Debbah, K. B. Letaief, and H. V. Poor, “A tutorial on extremely large-scale mimo for 6g: Fundamentals, signal processing, and applications,” IEEE Communications Surveys & Tutorials, 2024.
  206. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 994–1034, 2022.
  207. D. Chaudhary, S. Nayse, and L. Waghmare, “Application of wireless sensor networks for greenhouse parameter control in precision agriculture,” International Journal of Wireless & Mobile Networks, vol. 3, pp. 140–149, 02 2011.
  208. “Massive mimo for internet of things (iot) connectivity,” Physical Communication, vol. 37, p. 100859, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1874490719303891
  209. J. Zhao, F. Gao, Q. Wu, S. Jin, Y. Wu, and W. Jia, “Beam tracking for uav mounted satcom on-the-move with massive antenna array,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 363–375, 2018.
  210. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450–2525, 2020.
  211. S. A. Alsarayreh, N. A. M. Radzi, A. A. Alkahtani, and K. H. M. Azmi, “Intelligent reflecting surface–uav systems in the internet of things network: A survey,” IEEE Access, vol. 11, pp. 85 031–85 049, 2023.
  212. H. Hashida, Y. Kawamoto, and N. Kato, “Intelligent reflecting surface placement optimization in air-ground communication networks toward 6g,” IEEE Wireless Communications, vol. 27, no. 6, pp. 146–151, 2020.
  213. Y. Liu, D. Li, B. Du, L. Shu, and G. Han, “Rethinking sustainable sensing in agricultural internet of things: From power supply perspective,” IEEE Wireless Communications, vol. 29, no. 4, pp. 102–109, 2022.
  214. S. Kisseleff, S. Chatzinotas, and B. Ottersten, “Reconfigurable intelligent surfaces in challenging environments: Underwater, underground, industrial and disaster,” IEEE Access, vol. 9, pp. 150 214–150 233, 2021.
  215. D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising the digital twin: A systematic literature review,” CIRP Journal of Manufacturing Science and Technology, vol. 29, pp. 36–52, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1755581720300110
  216. B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin: Definitions, characteristics, applications, and design implications,” IEEE Access, vol. 7, pp. 167 653–167 671, 2019.
  217. C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert, “Digital twins in smart farming,” Agricultural Systems, vol. 189, p. 103046, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308521X20309070
  218. A. Ghandar, A. Ahmed, S. Zulfiqar, Z. Hua, M. Hanai, and G. Theodoropoulos, “A decision support system for urban agriculture using digital twin: A case study with aquaponics,” IEEE Access, vol. 9, pp. 35 691–35 708, 2021.
  219. D. Howard, Z. Ma, J. Aaslyng, and B. Jørgensen, “Data architecture for digital twin of commercial greenhouse production,” 07 2020.
  220. M. Jans-Singh, K. Leeming, R. Choudhary, and M. Girolami, “Digital twin of an urban-integrated hydroponic farm,” Data-Centric Engineering, vol. 1, p. e20, 2020.
  221. C. Pylianidis, S. Osinga, and I. N. Athanasiadis, “Introducing digital twins to agriculture,” Computers and Electronics in Agriculture, vol. 184, p. 105942, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169920331471
  222. S. A. Abdel Hakeem, H. H. Hussein, and H. Kim, “Vision and research directions of 6g technologies and applications,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, Part A, pp. 2419–2442, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157822001033
  223. Z. Lv, R. Lou, J. Li, A. K. Singh, and H. Song, “Big data analytics for 6g-enabled massive internet of things,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5350–5359, 2021.
  224. N. M. Mohammed et al., “From 5g to 6g technology: Meets energy, internet-of-things and machine learning: A survey,” Applied Sciences, vol. 11, no. 17, p. 8117, 2021.
  225. T. Hewa, G. Gür, A. Kalla, M. Ylianttila, A. Braeken, and M. Liyanage, “The role of blockchain in 6g: Challenges, opportunities and research directions,” 03 2020.
  226. K. L.B., “Survey on the applications of blockchain in agriculture,” Agriculture, vol. 12, no. 9, 2022. [Online]. Available: https://www.mdpi.com/2077-0472/12/9/1333
  227. D. C. Nguyen, P. Cheng, M. Ding, D. Lopez-Perez, P. N. Pathirana, J. Li, A. Seneviratne, Y. Li, and H. V. Poor, “Wireless ai: Enabling an ai-governed data life cycle,” arXiv preprint arXiv:2003.00866, 2020.
  228. W. Dong, T. Wu, Y. Sun, and J. Luo, “Digital mapping of soil available phosphorus supported by ai technology for precision agriculture,” in 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), 2018, pp. 1–5.
  229. N. Gupta, M. Khosravy, N. Patel, N. Dey, S. Gupta, H. Darbari, and R. G. Crespo, “Economic data analytic ai technique on iot edge devices for health monitoring of agriculture machines,” Applied Intelligence, vol. 50, no. 11, pp. 3990–4016, 2020. [Online]. Available: https://doi.org/10.1007/s10489-020-01744-x
  230. S. Torai, S. Chiyoda, and K. Ohara, “Application of ai technology to smart agriculture: Detection of plant diseases,” in 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2020, pp. 1514–1519.
  231. N. Khan, S. Coleri, A. Abdallah, A. Celik, and A. M. Eltawil, “Explainable and robust artificial intelligence for trustworthy resource management in 6g networks,” IEEE Communications Magazine, pp. 1–7, 2023.
  232. G. Idoje, T. Dagiuklas, and M. Iqbal, “Survey for smart farming technologies: Challenges and issues,” Computers & Electrical Engineering, vol. 92, p. 107104, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790621001117
  233. V. Vijayakumar and N. Balakrishnan, “Retracted article: Artificial intelligence-based agriculture automated monitoring systems using wsn,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 7, pp. 8009–8016, 2021. [Online]. Available: https://doi.org/10.1007/s12652-020-02530-w
  234. D. R. Vincent, N. Deepa, D. Elavarasan, K. Srinivasan, S. H. Chauhdary, and C. Iwendi, “Sensors driven ai-based agriculture recommendation model for assessing land suitability,” Sensors, vol. 19, no. 17, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/17/3667
  235. I. Dasgupta, J. Saha, P. Venkatasubbu, and P. Ramasubramanian, “Ai crop predictor and weed detector using wireless technologies: A smart application for farmers,” Arabian Journal for Science and Engineering, vol. 45, no. 12, pp. 11 115–11 127, 2020. [Online]. Available: https://doi.org/10.1007/s13369-020-04928-2
  236. A. Somov, D. Shadrin, I. Fastovets, A. Nikitin, S. Matveev, I. seledets, and O. Hrinchuk, “Pervasive agriculture: Iot-enabled greenhouse for plant growth control,” IEEE Pervasive Computing, vol. 17, no. 4, pp. 65–75, 2018.
  237. H. Wang, W. Wang, X. Chen, and Z. Zhang, “Wireless information and energy transfer in interference aware massive mimo systems,” in 2014 IEEE Global Communications Conference, 2014, pp. 2556–2561.
  238. B. Clerckx, J. Kim, K. W. Choi, and D. I. Kim, “Foundations of wireless information and power transfer: Theory, prototypes, and experiments,” Proceedings of the IEEE, vol. 110, no. 1, pp. 8–30, 2022.
  239. X. Yang, L. Shu, J. Chen, M. A. Ferrag, J. Wu, E. Nurellari, and K. Huang, “A survey on smart agriculture: Development modes, technologies, and security and privacy challenges,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 273–302, 2021.
  240. T. Hidayat, R. Mahardiko, and S. Franky, “Method of systematic literature review for internet of things in zigbee smart agriculture,” 06 2020.
  241. A. Coffin, C. Bonnefoy-Claudet, M. Chassaigne, A. Jansen, and C. Gée, “Parade: A low-cost open-source device for photosynthetically active radiation (par) measurements,” Smart Agricultural Technology, vol. 1, p. 100018, 2021.
  242. T. Akitsu, K. N. Nasahara, Y. Hirose, O. Ijima, and A. Kume, “Quantum sensors for accurate and stable long-term photosynthetically active radiation observations,” Agricultural and Forest Meteorology, vol. 237-238, pp. 171–183, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168192317300114
  243. L. N. Lacerda, J. L. Snider, Y. Cohen, V. Liakos, S. Gobbo, and G. Vellidis, “Using uav-based thermal imagery to detect crop water status variability in cotton,” Smart Agricultural Technology, vol. 2, p. 100029, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772375521000290
  244. B.-I. Pahontu, D.-A. Arsene, and M. Mocanu, “A survey about industries that blockchain can transform,” in 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2020, pp. 1–6.
  245. M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, “A survey on the adoption of blockchain in iot: Challenges and solutions,” Blockchain: Research and Applications, vol. 2, no. 2, p. 100006, 2021.
  246. D. D.S and K. G, “Survey on agri-food supply chain using blockchain,” in 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2021, pp. 1619–1626.
  247. G. d. S. R. Rocha, L. de Oliveira, and E. Talamini, “Blockchain applications in agribusiness: A systematic review,” Future Internet, vol. 13, no. 4, p. 95, 2021.
  248. F.-J. Ferrández-Pastor, J. Mora-Pascual, and D. Díaz-Lajara, “Agricultural traceability model based on iot and blockchain: Application in industrial hemp production,” Journal of Industrial Information Integration, vol. 29, p. 100381, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2452414X22000498
  249. M. Alshehri, “Blockchain-assisted internet of things framework in smart livestock farming,” Internet of Things, vol. 22, p. 100739, 2023.
  250. N. Alsharari, “Integrating blockchain technology with internet of things to efficiency,” International Journal of Technology, Innovation and Management (IJTIM), vol. 1, no. 2, pp. 01–13, 2021.
  251. R. Iqbal and T. A. Butt, “Safe farming as a service of blockchain-based supply chain management for improved transparency,” Cluster Computing, vol. 23, pp. 2139–2150, 2020.
  252. W. Liu, X.-F. Shao, C.-H. Wu, and P. Qiao, “A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development,” Journal of Cleaner Production, vol. 298, p. 126763, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0959652621009823
  253. K. Dey and U. Shekhawat, “Blockchain for sustainable e-agriculture: Literature review, architecture for data management, and implications,” Journal of Cleaner Production, vol. 316, p. 128254, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0959652621024707
  254. M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, “Security and privacy for green iot-based agriculture: Review, blockchain solutions, and challenges,” IEEE Access, vol. 8, pp. 32 031–32 053, 2020.
  255. C. Pahl, N. El Ioini, and S. Helmer, “A decision framework for blockchain platforms for iot and edge computing,” 03 2018.
  256. B. BORDEL, D. MARTIN, R. ALCARRIA, and T. ROBLES, “A blockchain-based water control system for the automatic management of irrigation communities,” in 2019 IEEE International Conference on Consumer Electronics (ICCE), 2019, pp. 1–2.
  257. A. Vangala, A. K. Das, N. Kumar, and M. Alazab, “Smart secure sensing for iot-based agriculture: Blockchain perspective,” IEEE Sensors Journal, vol. 21, no. 16, pp. 17 591–17 607, 2021.
  258. M. Ur Rahman, F. Baiardi, and L. Ricci, “Blockchain smart contract for scalable data sharing in iot: A case study of smart agriculture,” in 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), 2020, pp. 1–7.
  259. M. Torky and A. E. Hassanein, “Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges,” Computers and Electronics in Agriculture, vol. 178, p. 105476, 2020.
  260. M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, “Security and privacy for green iot-based agriculture: Review, blockchain solutions, and challenges,” IEEE access, vol. 8, pp. 32 031–32 053, 2020.
  261. K. Dey and U. Shekhawat, “Blockchain for sustainable e-agriculture: Literature review, architecture for data management, and implications,” Journal of Cleaner Production, vol. 316, p. 128254, 2021.
  262. A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, “Hybrid blockchain platforms for the internet of things (iot): A systematic literature review,” Sensors, vol. 22, no. 4, p. 1304, 2022.
  263. S. Mathur, A. Kalla, G. Gür, M. K. Bohra, and M. Liyanage, “A survey on role of blockchain for iot: Applications and technical aspects,” Computer Networks, vol. 227, p. 109726, 2023.
  264. S. Cao, W. Powell, M. Foth, V. Natanelov, T. Miller, and U. Dulleck, “Strengthening consumer trust in beef supply chain traceability with a blockchain-based human-machine reconcile mechanism,” Computers and Electronics in Agriculture, vol. 180, p. 105886, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016816992033091X
  265. K. Kampan, T. W. Tsusaka, and A. K. Anal, “Adoption of blockchain technology for enhanced traceability of livestock-based products,” Sustainability, vol. 14, no. 20, 2022. [Online]. Available: https://www.mdpi.com/2071-1050/14/20/13148
  266. L. Yang, X.-Y. Liu, and J. S. Kim, “Cloud-based livestock monitoring system using rfid and blockchain technology,” in 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), 2020, pp. 240–245.
  267. H. Makkar, “Potential blockchain applications in animal production and health sector,” CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, vol. 15, 06 2020.
  268. B. Sadayapillai and K. Kottursamy, “An agriculture supply chain model for improving farmer income using blockchain smart contract,” in Inventive Communication and Computational Technologies, G. Ranganathan, X. Fernando, and F. Shi, Eds.   Singapore: Springer Nature Singapore, 2022, pp. 587–598.
  269. H. Patel and B. Shrimali, “Agrionblock: Secured data harvesting for agriculture sector using blockchain technology,” ICT Express, vol. 9, no. 2, pp. 150–159, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405959521000862
  270. R. Kalaiselvi, V. Sudha, and V. P. Sumathi, “Streamlining loan distribution process in agriculture sectors,” in 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2021, pp. 1–5.
  271. Y. Hong, “New model of food supply chain finance based on the internet of things and blockchain,” Mobile Information Systems, vol. 2021, 07 2021.
  272. P. Katsikouli, A. Wilde, N. Dragoni, and H. Høgh-Jensen, “On the benefits and challenges of blockchains for managing food supply chains,” Journal of the Science of Food and Agriculture, vol. 101, 10 2020.
  273. B. Niu, J. Dong, Z. Dai, and J. Y. Jin, “Market expansion vs. intensified competition: Overseas supplier’s adoption of blockchain in a cross-border agricultural supply chain,” Electronic Commerce Research and Applications, vol. 51, p. 101113, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1567422321000855
  274. S. Hu, S. Huang, J. Huang, and J. Su, “Blockchain and edge computing technology enabling organic agricultural supply chain: A framework solution to trust crisis,” Computers & Industrial Engineering, vol. 153, p. 107079, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S036083522030749X
  275. S. S. Kamble, A. Gunasekaran, and R. Sharma, “Modeling the blockchain enabled traceability in agriculture supply chain,” International Journal of Information Management, vol. 52, p. 101967, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0268401218312118
  276. A. Mukherjee, R. Singh, R. Mishra, and S. Bag, “Application of blockchain technology for sustainability development in agricultural supply chain: justification framework,” Operations Management Research, vol. 15, 01 2021.
  277. D.-H. Shih, K.-C. Lu, Y.-T. Shih, and P.-Y. Shih, “A simulated organic vegetable production and marketing environment by using ethereum,” Electronics, vol. 8, no. 11, 2019. [Online]. Available: https://www.mdpi.com/2079-9292/8/11/1341
  278. B. Harshavardhan Reddy, Y. Aravind Reddy, and K. Sashi Rekha, “Blockchain: To improvise economic efficiency and supply chain management in agriculture,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 12, pp. 4999–5004, 2019.
  279. L. R. .G, K. Kiruba, P. Hemalatha, J. Manikandan, M. Madhin, and R. Mohan, “Revolutionizing secure commercialization in agriculture using blockchain technology,” 07 2021, pp. 1–6.
  280. W. Guo and K. Yao, “Supply chain governance of agricultural products under big data platform based on blockchain technology,” Scientific Programming, vol. 2022, pp. 1–16, 2022.
  281. S. Polymeni, S. Plastras, D. N. Skoutas, G. Kormentzas, and C. Skianis, “The impact of 6g-iot technologies on the development of agriculture 5.0: A review,” Electronics, vol. 12, no. 12, 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/12/2651
  282. S. Angra and S. Ahuja, “Machine learning and its applications: A review,” in 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), 2017, pp. 57–60.
  283. IBM, “What is machine learning (ml)?” https://www.ibm.com/topics/machine-learning, online; accessed 13-March-2024.
  284. T. O. Ayodele, “Machine learning overview,” New Advances in Machine Learning, vol. 2, no. 9-18, p. 16, 2010.
  285. S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers in plant science, vol. 7, p. 215232, 2016.
  286. D. Hughes, M. Salathé, et al., “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” arXiv preprint arXiv:1511.08060, 2015.
  287. J. Amara, B. Bouaziz, and A. Algergawy, “A deep learning-based approach for banana leaf diseases classification,” 2017.
  288. A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Computers and Electronics in Agriculture, vol. 175, p. 105456, 2020.
  289. X. Wang, W. Hu, K. Li, L. Song, and L. Song, “Modeling of soft sensor based on dbn-elm and its application in measurement of nutrient solution composition for soilless culture,” in 2018 IEEE International Conference of Safety Produce Informatization (IICSPI).   IEEE, 2018, pp. 93–97.
  290. S. Park, J. Im, S. Park, and J. Rhee, “Amsr2 soil moisture downscaling using multisensor products through machine learning approach,” in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).   IEEE, 2015, pp. 1984–1987.
  291. A. Morellos, X.-E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen, “Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-nir spectroscopy,” Biosystems Engineering, vol. 152, pp. 104–116, 2016.
  292. K. Benke, S. Norng, N. Robinson, K. Chia, D. Rees, and J. Hopley, “Development of pedotransfer functions by machine learning for prediction of soil electrical conductivity and organic carbon content,” Geoderma, vol. 366, p. 114210, 2020.
  293. J.-Y. Shin, K. R. Kim, and J.-C. Ha, “Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning algorithm for field-scale agricultural management,” Agricultural and Forest Meteorology, vol. 281, p. 107858, 2020.
  294. S. Cramer, M. Kampouridis, A. A. Freitas, and A. K. Alexandridis, “An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives,” Expert Systems with Applications, vol. 85, pp. 169–181, 2017.
  295. K. Kuwata and R. Shibasaki, “Estimating crop yields with deep learning and remotely sensed data,” in 2015 IEEE international geoscience and remote sensing symposium (IGARSS).   IEEE, 2015, pp. 858–861.
  296. P. Nevavuori, N. Narra, and T. Lipping, “Crop yield prediction with deep convolutional neural networks,” Computers and electronics in agriculture, vol. 163, p. 104859, 2019.
  297. S. Khaki and L. Wang, “Crop yield prediction using deep neural networks,” Frontiers in plant science, vol. 10, p. 452963, 2019.
  298. Y. Cai, K. Guan, D. Lobell, A. B. Potgieter, S. Wang, J. Peng, T. Xu, S. Asseng, Y. Zhang, L. You, et al., “Integrating satellite and climate data to predict wheat yield in australia using machine learning approaches,” Agricultural and forest meteorology, vol. 274, pp. 144–159, 2019.
  299. A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning–method overview and review of use for fruit detection and yield estimation,” Computers and electronics in agriculture, vol. 162, pp. 219–234, 2019.
  300. M. Maimaitijiang, V. Sagan, P. Sidike, S. Hartling, F. Esposito, and F. B. Fritschi, “Soybean yield prediction from uav using multimodal data fusion and deep learning,” Remote sensing of environment, vol. 237, p. 111599, 2020.
  301. B. Espejo-Garcia, N. Mylonas, L. Athanasakos, S. Fountas, and I. Vasilakoglou, “Towards weeds identification assistance through transfer learning,” Computers and Electronics in Agriculture, vol. 171, p. 105306, 2020.
  302. Ł. Chechliński, B. Siemiątkowska, and M. Majewski, “A system for weeds and crops identification—reaching over 10 fps on raspberry pi with the usage of mobilenets, densenet and custom modifications,” Sensors, vol. 19, no. 17, p. 3787, 2019.
  303. B. Liu and R. Bruch, “Weed detection for selective spraying: a review,” Current Robotics Reports, vol. 1, pp. 19–26, 2020.
  304. A. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based machine vision and image processing techniques,” Computers and electronics in agriculture, vol. 158, pp. 226–240, 2019.
  305. M. Janani and R. Jebakumar, “A study on smart irrigation using machine learning,” Cell & Cellular Life Sciences Journal, vol. 4, no. 1, pp. 1–8, 2019.
  306. A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine learning applications for precision agriculture: A comprehensive review,” IEEE Access, vol. 9, pp. 4843–4873, 2020.
  307. A. Vij, S. Vijendra, A. Jain, S. Bajaj, A. Bassi, and A. Sharma, “Iot and machine learning approaches for automation of farm irrigation system,” Procedia Computer Science, vol. 167, pp. 1250–1257, 2020.
  308. R. Kondaveti, A. Reddy, and S. Palabtla, “Smart irrigation system using machine learning and iot,” in 2019 international conference on vision towards emerging trends in communication and networking (ViTECoN).   IEEE, 2019, pp. 1–11.
  309. R. S. Alonso, I. Sittón-Candanedo, Ó. García, J. Prieto, and S. Rodríguez-González, “An intelligent edge-iot platform for monitoring livestock and crops in a dairy farming scenario,” Ad Hoc Networks, vol. 98, p. 102047, 2020.
  310. D. Berckmans, “General introduction to precision livestock farming,” Animal Frontiers, vol. 7, no. 1, pp. 6–11, 2017.
  311. I. Halachmi and M. Guarino, “Precision livestock farming: a ‘per animal’approach using advanced monitoring technologies,” Animal, vol. 10, no. 9, pp. 1482–1483, 2016.
  312. R. García, J. Aguilar, M. Toro, A. Pinto, and P. Rodríguez, “A systematic literature review on the use of machine learning in precision livestock farming,” Computers and Electronics in Agriculture, vol. 179, p. 105826, 2020.
  313. G. Morota, R. V. Ventura, F. F. Silva, M. Koyama, and S. C. Fernando, “Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture,” Journal of animal science, vol. 96, no. 4, pp. 1540–1550, 2018.
  314. S. Zhang, Q. Su, and Q. Chen, “Application of machine learning in animal disease analysis and prediction,” Current Bioinformatics, vol. 16, no. 7, pp. 972–982, 2021.
  315. G. Machado, M. R. Mendoza, and L. G. Corbellini, “What variables are important in predicting bovine viral diarrhea virus? a random forest approach,” Veterinary research, vol. 46, pp. 1–15, 2015.
  316. R. M. Hyde, P. M. Down, A. J. Bradley, J. E. Breen, C. Hudson, K. A. Leach, and M. J. Green, “Automated prediction of mastitis infection patterns in dairy herds using machine learning,” Scientific reports, vol. 10, no. 1, p. 4289, 2020.
  317. G.-J. Horng, M.-X. Liu, and C.-C. Chen, “The smart image recognition mechanism for crop harvesting system in intelligent agriculture,” IEEE Sensors Journal, vol. 20, no. 5, pp. 2766–2781, 2019.
  318. Z. Zhang, C. Igathinathane, J. Li, H. Cen, Y. Lu, and P. Flores, “Technology progress in mechanical harvest of fresh market apples,” Computers and Electronics in Agriculture, vol. 175, p. 105606, 2020.
  319. D. Pise and G. Upadhye, “Grading of harvested mangoes quality and maturity based on machine learning techniques,” in 2018 international conference on smart city and emerging technology (ICSCET).   IEEE, 2018, pp. 1–6.
  320. M. G. Maponya, A. Van Niekerk, and Z. E. Mashimbye, “Pre-harvest classification of crop types using a sentinel-2 time-series and machine learning,” Computers and electronics in agriculture, vol. 169, p. 105164, 2020.
  321. H. Purandare, N. Ketkar, S. Pansare, P. Padhye, and A. Ghotkar, “Analysis of post-harvest losses: An internet of things and machine learning approach,” in 2016 International conference on automatic control and dynamic optimization techniques (ICACDOT).   IEEE, 2016, pp. 222–226.
Citations (3)

Summary

  • The paper analyzes how the Internet of Everything (IoE) enables sustainable and precision agriculture through the integration of diverse technologies.
  • The paper details how technologies like IoAT and nanotechnology enable specific precision agriculture applications.
  • Future directions emphasize integrating blockchain, 6G, and AI/ML into IoE agriculture to enhance resilience and efficiency.

Sustainable and Precision Agriculture with the Internet of Everything: A Comprehensive Analysis

The paper "Sustainable and Precision Agriculture with the Internet of Everything (IoE)" by Adil Z. Babar and Özgr B. Akan presents a thorough exploration of the profound impact of advanced communication and information technologies on agriculture. The research addresses the increasing demands on agricultural productivity driven by the accelerated global population growth and the concurrent need for improved resource management and climate change adaptation.

Overview of Agriculture and Technology

Historically, agriculture has undergone significant transformations catalyzed by technological advancements—from the first agricultural revolution to the more recent Agriculture 4.0 era. This latest phase, characterized by the integration of IoT, aims to enhance precision farming practices through detailed monitoring and management enabled by modern ICTs such as wireless systems and digital communication networks. Despite these advancements, disparities in technological adoption persist, particularly in rural areas, necessitating robust infrastructures and skill development programs.

Internet of Everything (IoE) and Precision Agriculture

IoE emerges as a pivotal paradigm that extends IoT capabilities by integrating a wide spectrum of connected devices, people, data, and processes, thus fostering a holistic approach to connectivity. The paper identifies this framework as a solution to address the challenges inhibiting agriculture, notably resource depletion and climate change. IoE encompasses several IoT specializations, such as IoNT, IoBNT, and IoST, dedicated to improving agricultural productivity by facilitating efficient data collection, analysis, and real-time decision-making.

Technological Applications and Impacts

The research delineates various technologies applicable to precision agriculture:

  • Internet of Agricultural Things (IoAT): Facilitates automation in water management, harvest optimization, disease management, and livestock monitoring through integrated sensors and data analytics.
  • Nanotechnology and Molecular Communication: Use of nanomaterials for enhanced nutrient delivery and pest control, along with molecular communication techniques for inter-plant signaling, enabling a deeper understanding of plant health at a molecular level.
  • Designer Phages: Explores the role of engineered phages in mitigating bacterial diseases in crops and livestock, offering a biocontrol mechanism as an alternative to traditional bactericides.
  • Internet of Fungus: Leveraging fungal networks for nutrient sharing and communication among plants, enhancing soil health and crop resilience.
  • Internet of Energy Harvesting Things: Discusses energy self-sufficiency in IoT devices, essential for maintaining agricultural operations, especially in off-grid settings.

Future Prospects and Research Directions

The paper envisions several future research trajectories, emphasizing the integration of blockchain for supply chain transparency, 6G for enhanced connectivity, and AI/ML for predictive analytics, all aimed at creating more resilient and efficient agricultural systems. The transformative potential of these technologies is underscored against the backdrop of ensuring sustainable food systems through improved yield rates and resource use efficiency.

In conclusion, this comprehensive analysis outlines a matrix of innovative solutions and challenges in leveraging the IoE for sustainable and precision agriculture. The authors call for continued research and development to harness these technologies fully, proposing a future where agriculture meets the growing demands through smart, integrated, and sustainable practices.