Coherence and imaginarity of quantum states (2404.06210v1)
Abstract: Baumgratz, Cramer and Plenio established a rigorous framework (BCP framework) for quantifying the coherence of quantum states [\href{http://dx.doi.org/10.1103/PhysRevLett.113.140401}{Phys. Rev. Lett. 113, 140401 (2014)}]. In BCP framework, a quantum state is called incoherent if it is diagonal in the fixed orthonormal basis, and a coherence measure should satisfy some conditions. For a fixed orthonormal basis, if a quantum state $\rho $ has nonzero imaginary part, then $\rho $ must be coherent. How to quantitatively characterize this fact? In this work, we show that any coherence measure $C$ in BCP framework has the property $C(\rho )-C($Re$\rho )\geq 0$ if $C$ is invariant under state complex conjugation, i.e., $C(\rho )=C(\rho {\ast })$, here $\rho {\ast }$ is the conjugate of $\rho ,$ Re$\rho $ is the real part of $\rho .$ If $C$ does not satisfy $C(\rho )=C(\rho {\ast }),$ we can define a new coherence measure $C{\prime }(\rho )=\frac{1}{2}[C(\rho )+C(\rho {\ast })]$ such that $C{\prime }(\rho )=C{\prime }(\rho {\ast }).$ We also establish some similar results for bosonic Gaussian states.
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
- A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, Journal of Physics A: Mathematical and Theoretical 51, 414009 (2018).
- H. Zhu, Hiding and masking quantum information in complex and real quantum mechanics, Phys. Rev. Res. 3, 033176 (2021).
- J. Xu, Imaginarity of gaussian states, Phys. Rev. A 108, 062203 (2023).
- M. Horodecki and J. Oppenheim, (quantumness in the context of) resource theories, International Journal of Modern Physics B 27, 1345019 (2013).
- E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
- C.-S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95, 042337 (2017).
- H. Zhao and C.-S. Yu, Coherence measure in terms of the tsallis relative α𝛼\alphaitalic_α entropy, Scientific reports 8, 299 (2018).
- J. Xu, l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT norm of coherence is not equal to its convex roof quantifier, Journal of Physics A: Mathematical and Theoretical 55, 145302 (2022).
- S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
- S. Olivares, Quantum optics in the phase space: a tutorial on gaussian states, The European Physical Journal Special Topics 203, 3 (2012).
- A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
- J. Xu, Quantifying coherence of gaussian states, Phys. Rev. A 93, 032111 (2016).
- J. Huh, Multimode bogoliubov transformation and husimi’s q-function, Journal of Physics: Conference Series 1612, 012015 (2020).
- J. Xu, Coherence of quantum gaussian channels, Physics Letters A 387, 127028 (2021).
- S. Du and Z. Bai, Conversion of gaussian states under incoherent gaussian operations, Phys. Rev. A 105, 022412 (2022).
- S. Du and Z. Bai, Incoherent gaussian equivalence of m𝑚mitalic_m-mode gaussian states, Phys. Rev. A 107, 012407 (2023).
- J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, American journal of mathematics 58, 141 (1936).
- T. Hiroshima, Additivity and multiplicativity properties of some gaussian channels for gaussian inputs, Phys. Rev. A 73, 012330 (2006).
- R. Bhatia and T. Jain, Variational principles for symplectic eigenvalues, Canadian Mathematical Bulletin 64, 553 (2021).