Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design of Transit-Centric Multimodal Urban Mobility System with Autonomous Mobility-on-Demand (2404.05885v1)

Published 8 Apr 2024 in cs.SI and math.OC

Abstract: This paper addresses the pressing challenge of urban mobility in the context of growing urban populations, changing demand patterns for urban mobility, and emerging technologies like Mobility-on-Demand (MoD) platforms and Autonomous Vehicle (AV). As urban areas swell and demand pattern changes, the integration of Autonomous Mobility-on-Demand (AMoD) systems with existing public transit (PT) networks presents great opportunities to enhancing urban mobility. We propose a novel optimization framework for solving the Transit-Centric Multimodal Urban Mobility with Autonomous Mobility-on-Demand (TCMUM-AMoD) at scale. The system operator (public transit agency) determines the network design and frequency settings of the PT network, fleet sizing and allocations of AMoD system, and the pricing for using the multimodal system with the goal of minimizing passenger disutility. Passengers' mode and route choice behaviors are modeled explicitly using discrete choice models. A first-order approximation algorithm is introduced to solve the problem at scale. Using a case study in Chicago, we showcase the potential to optimize urban mobility across different demand scenarios. To our knowledge, ours is the first paper to jointly optimize transit network design, fleet sizing, and pricing for the multimodal mobility system while considering passengers' mode and route choices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. W. Lerner, “The future of urban mobility: towards networked, multimodal cities of 2050,” 2018. [Online]. Available: https://www.adlittle.com/sites/default/files/viewpoints/adl_the_future_of_urban_mobility_report.pdf
  2. U.S. Department of Transportation, “Public transportation’s role in responding to climate change,” 2010. [Online]. Available: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/PublicTransportationsRoleInRespondingToClimateChange2010.pdf
  3. B. Mo, Z. Cao, H. Zhang, Y. Shen, and J. Zhao, “Competition between shared autonomous vehicles and public transit: A case study in Singapore,” Transportation Research Part C: Emerging Technologies, vol. 127, no. April, p. 103058, 2021. [Online]. Available: https://doi.org/10.1016/j.trc.2021.103058
  4. A. Ceder and N. H. Wilson, “Bus network design,” Transportation Research Part B: Methodological, vol. 20, no. 4, pp. 331–344, 1986. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0191261586900470
  5. O. Ibarra-Rojas, F. Delgado, R. Giesen, and J. Muñoz, “Planning, operation, and control of bus transport systems: A literature review,” Transportation Research Part B: Methodological, vol. 77, p. 38–75, Jul 2015.
  6. G. F. Newell, “Dispatching Policies for a Transportation Route,” Transportation Science, vol. 5, no. 1, pp. 91–105, 1971.
  7. P. G. Furth and N. H. Wilson, “Setting Frequencies on Bus Routes: Theory and Practice.” Transportation Research Record, pp. 1–7, 1981.
  8. I. Verbas and H. Mahmassani, “Optimal allocation of service frequencies over transit network routes and time periods,” Transportation Research Record, no. 2334, pp. 50–59, 2013.
  9. J. M. Barrero, N. Bloom, and S. J. Davis, “Why working from home will stick,” National Bureau of Economic Research, Working Paper 28731, April 2021. [Online]. Available: http://www.nber.org/papers/w28731
  10. N. S. Caros, X. Guo, and J. Zhao, “The emerging spectrum of flexible work locations: implications for travel demand and carbon emissions,” 2023.
  11. N. S. Caros, X. Guo, Y. Zheng, and J. Zhao, “The impacts of remote work on travel: insights from nearly three years of monthly surveys,” 2023.
  12. K. Gkiotsalitis, M. Schmidt, and E. van der Hurk, “Subline frequency setting for autonomous minibusses under demand uncertainty,” Transportation Research Part C: Emerging Technologies, vol. 135, p. 103492, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X21004782
  13. X. Guo, B. Mo, H. N. Koutsopoulos, S. Wang, and J. Zhao, “Transit frequency setting problem with demand uncertainty,” 2022.
  14. H. Wang and H. Yang, “Ridesourcing systems: A framework and review,” Transportation Research Part B: Methodological, vol. 129, p. 122–155, Nov 2019.
  15. M. Young and S. Farber, “The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey,” Transportation Research Part A: Policy and Practice, vol. 119, no. November 2018, pp. 383–392, 2019. [Online]. Available: https://doi.org/10.1016/j.tra.2018.11.018
  16. Q. Wang, S. Wang, D. Zhuang, H. Koutsopoulos, and J. Zhao, “Uncertainty quantification of spatiotemporal travel demand with probabilistic graph neural networks,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–12, 2024.
  17. J. V. Hall and A. B. Krueger, “An Analysis of the Labor Market for Uber’s Driver-Partners in the United States,” ILR Review, vol. 71, no. 3, pp. 705–732, 2018.
  18. J. C. Castillo, D. T. Knoepfle, and E. G. Weyl, “Matching in Ride Hailing: Wild Goose Chases and How to Solve Them,” SSRN Electronic Journal, 2022. [Online]. Available: https://papers.ssrn.com/abstract=2890666
  19. X. Guo, A. Haupt, H. Wang, R. Qadri, and J. Zhao, “Understanding multi-homing and switching by platform drivers,” Transportation Research Part C: Emerging Technologies, vol. 154, p. 104233, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X2300222X
  20. M. C. Cohen and R. Zhang, “Competition and coopetition for two-sided platforms,” SSRN Working Paper No. 3028138, p. 48, 2017.
  21. H. Zhang, X. Guo, and J. Zhao, “Economies and diseconomies of scale in segmented mobility sharing markets,” 2022.
  22. X. Wang, Z. Zhao, H. Zhang, X. Guo, and J. Zhao, “Quantifying the uneven efficiency benefits of ridesharing market integration,” 2023.
  23. X. Guo, A. Qu, H. Zhang, P. Noursalehi, and J. Zhao, “Dissolving the segmentation of a shared mobility market: A framework and four market structure designs,” Transportation Research Part C: Emerging Technologies, vol. 157, p. 104397, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X2300387X
  24. S. Banerjee, D. Freund, and T. Lykouris, “Pricing and optimization in shared vehicle systems: An approximation framework,” Operations Research, vol. 70, no. 3, pp. 1783–1805, 2022. [Online]. Available: https://doi.org/10.1287/opre.2021.2165
  25. J. Liu, W. Ma, and S. Qian, “Optimal curbside pricing for managing ride-hailing pick-ups and drop-offs,” Transportation Research Part C: Emerging Technologies, vol. 146, p. 103960, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X22003734
  26. J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment,” Proceedings of the National Academy of Sciences, vol. 114, no. 3, pp. 462–467, 2017.
  27. D. Bertsimas, P. Jaillet, and S. Martin, “Online vehicle routing: The edge of optimization in large-scale applications,” Operations Research, vol. 67, no. 1, pp. 143–162, 2019. [Online]. Available: https://doi.org/10.1287/opre.2018.1763
  28. A. Tafreshian, N. Masoud, and Y. Yin, “Frontiers in service science: Ride matching for peer-to-peer ride sharing: A review and future directions,” Service Science, vol. 12, no. 2-3, pp. 44–60, 2020. [Online]. Available: https://doi.org/10.1287/serv.2020.0258
  29. J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-demand systems: A reinforcement learning approach,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 220–225.
  30. X. Guo, N. S. Caros, and J. Zhao, “Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand,” Transportation Research Part B: Methodological, vol. 150, pp. 161–189, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0191261521001004
  31. X. Guo, Q. Wang, and J. Zhao, “Data-driven vehicle rebalancing with predictive prescriptions in the ride-hailing system,” IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 251–266, 2022.
  32. X. Guo, H. Xu, D. Zhuang, Y. Zheng, and J. Zhao, “Fairness-enhancing vehicle rebalancing in the ride-hailing system,” 2023.
  33. G. Zardini, N. Lanzetti, M. Pavone, and E. Frazzoli, “Analysis and control of autonomous mobility-on-demand systems: A review,” arXiv:2106.14827 [cs, eess], Jun 2021, arXiv: 2106.14827. [Online]. Available: http://arxiv.org/abs/2106.14827
  34. R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec, and M. Pavone, “Data-driven model predictive control of autonomous mobility-on-demand systems,” arXiv:1709.07032 [cs, stat], Sep 2017, arXiv: 1709.07032. [Online]. Available: http://arxiv.org/abs/1709.07032
  35. M. Tsao, D. Milojevic, C. Ruch, M. Salazar, E. Frazzoli, and M. Pavone, “Model predictive control of ride-sharing autonomous mobility-on-demand systems,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 6665–6671.
  36. Y. Shen, H. Zhang, and J. Zhao, “Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in singapore,” Transportation Research Part A: Policy and Practice, vol. 113, p. 125–136, Jul 2018.
  37. J. Wen, Y. X. Chen, N. Nassir, and J. Zhao, “Transit-oriented autonomous vehicle operation with integrated demand-supply interaction,” Transportation Research Part C: Emerging Technologies, vol. 97, p. 216–234, Dec 2018.
  38. M. Salazar, N. Lanzetti, F. Rossi, M. Schiffer, and M. Pavone, “Intermodal autonomous mobility-on-demand,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp. 3946–3960, 2020.
  39. Q. Luo, S. Li, and R. C. Hampshire, “Optimal design of intermodal mobility networks under uncertainty: Connecting micromobility with mobility-on-demand transit,” EURO Journal on Transportation and Logistics, vol. 10, no. June 2020, p. 100045, 2021. [Online]. Available: https://doi.org/10.1016/j.ejtl.2021.100045
  40. K. Steiner and S. Irnich, “Strategic planning for integrated mobility-on-demand and urban public bus networks,” Transportation Science, vol. 54, no. 6, pp. 1616–1639, 2020.
  41. H. K. Pinto, M. F. Hyland, H. S. Mahmassani, and I. Ö. Verbas, “Joint design of multimodal transit networks and shared autonomous mobility fleets,” Transportation Research Part C: Emerging Technologies, vol. 113, pp. 2–20, 2020. [Online]. Available: https://doi.org/10.1016/j.trc.2019.06.010.
  42. S. Banerjee, C. Hssaine, N. Périvier, and S. Samaranayake, “Real-time approximate routing for smart transit systems,” 2021.
  43. Q. Luo, S. Samaranayake, and S. Banerjee, “Multimodal mobility systems: joint optimization of transit network design and pricing,” in Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, ser. ICCPS ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 121–131. [Online]. Available: https://doi.org/10.1145/3450267.3450540
  44. Y. Wang, X. Lin, F. He, and M. Li, “Designing transit-oriented multi-modal transportation systems considering travelers’ choices,” Transportation Research Part B: Methodological, vol. 162, no. October 2021, pp. 292–327, 2022. [Online]. Available: https://doi.org/10.1016/j.trb.2022.06.002
  45. P. Kumar and A. Khani, “Planning of integrated mobility-on-demand and urban transit networks,” Transportation Research Part A: Policy and Practice, vol. 166, no. March, pp. 499–521, 2022. [Online]. Available: https://doi.org/10.1016/j.tra.2022.11.001
  46. D. Bertsimas, Y. Sian Ng, and J. Yan, “Joint frequency-setting and pricing optimization on multimodal transit networks at scale,” Transportation Science, vol. 54, no. 3, p. 839–853, May 2020.
  47. Y. Shen, H. Zhang, and J. Zhao, “Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in singapore,” Transportation Research Part A: Policy and Practice, vol. 113, pp. 125–136, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S096585641730681X
  48. D. McFadden, “The measurement of urban travel demand,” Journal of Public Economics, vol. 3, no. 4, pp. 303–328, 1974. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0047272774900036
  49. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  50. G. E. Sánchez-Martínez, “Inference of public transportation trip destinations by using fare transaction and vehicle location data: Dynamic programming approach,” Transportation Research Record, vol. 2652, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.3141/2652-01
  51. J. Zhao, A. Rahbee, and N. H. M. Wilson, “Estimating a rail passenger trip origin-destination matrix using automatic data collection systems,” Computer-Aided Civil and Infrastructure Engineering, vol. 22, no. 5, pp. 376–387, 2007. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8667.2007.00494.x
  52. N. S. Caros, X. Guo, A. Stewart, J. Attanucci, N. Smith, D. Nioras, A. Gartsman, and A. Zimmer, “Ridership and operations visualization engine: An integrated transit performance and passenger journey visualization engine,” Transportation Research Record, 2022. [Online]. Available: https://doi.org/10.1177/03611981221103232
  53. Brett Helling, “How much does uber cost? fare pricing, rates, and cost estimates explained,” 2024. [Online]. Available: https://www.ridester.com/uber-rates-cost/
  54. M. Hyland, C. Frei, A. Frei, and H. S. Mahmassani, “Riders on the storm: Exploring weather and seasonality effects on commute mode choice in chicago,” Travel Behaviour and Society, vol. 13, pp. 44–60, 10 2018, vOT.
  55. Transport for London, “Traffic modelling guidelines (version 4.0),” 2021. [Online]. Available: https://content.tfl.gov.uk/traffic-modelling-guidelines.pdf
  56. C. MacKechnie, “How much does a bus cost to purchase and operate?” 2019. [Online]. Available: https://www.liveabout.com/bus-cost-to-purchase-and-operate-2798845
  57. T. Mickle, Y. Lu, and M. Isaac, “This experience may feel futuristic’: Three rides in waymo robot taxis,” 2023. [Online]. Available: https://www.nytimes.com/2023/08/21/technology/waymo-driverless-cars-san-francisco.html?searchResultPosition=1

Summary

We haven't generated a summary for this paper yet.