Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Centrality Estimators for Probability Density Functions (2404.05816v1)

Published 8 Apr 2024 in math.ST, cs.LG, and stat.TH

Abstract: In this report, we explore the data selection leading to a family of estimators maximizing a centrality. The family allows a nice properties leading to accurate and robust probability density function fitting according to some criteria we define. We establish a link between the centrality estimator and the maximum likelihood, showing that the latter is a particular case. Therefore, a new probability interpretation of Fisher maximum likelihood is provided. We will introduce and study two specific centralities that we have named H\"older and Lehmer estimators. A numerical simulation is provided showing the effectiveness of the proposed families of estimators opening the door to development of new concepts and algorithms in machine learning, data mining, statistics, and data analysis.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets