Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized Smoothing (2404.05350v1)

Published 8 Apr 2024 in cs.LG and cs.CR

Abstract: Randomized smoothing is the primary certified robustness method for accessing the robustness of deep learning models to adversarial perturbations in the l2-norm, by adding isotropic Gaussian noise to the input image and returning the majority votes over the base classifier. Theoretically, it provides a certified norm bound, ensuring predictions of adversarial examples are stable within this bound. A notable constraint limiting widespread adoption is the necessity to retrain base models entirely from scratch to attain a robust version. This is because the base model fails to learn the noise-augmented data distribution to give an accurate vote. One intuitive way to overcome this challenge is to involve a custom-trained denoiser to eliminate the noise. However, this approach is inefficient and sub-optimal. Inspired by recent large model training procedures, we explore an alternative way named PEFTSmoothing to adapt the base model to learn the Gaussian noise-augmented data with Parameter-Efficient Fine-Tuning (PEFT) methods in both white-box and black-box settings. Extensive results demonstrate the effectiveness and efficiency of PEFTSmoothing, which allow us to certify over 98% accuracy for ViT on CIFAR-10, 20% higher than SoTA denoised smoothing, and over 61% accuracy on ImageNet which is 30% higher than CNN-based denoiser and comparable to the Diffusion-based denoiser.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chengyan Fu (3 papers)
  2. Wenjie Wang (150 papers)

Summary

We haven't generated a summary for this paper yet.