2000 character limit reached
Function spaces for orbit-finite sets (2404.05265v1)
Published 8 Apr 2024 in cs.LO, cs.FL, and math.LO
Abstract: Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function spaces, i.e. if X and Y are orbit-finite sets, then the space of finitely supported functions from X to Y is not orbit-finite. In this paper we propose two solutions to this problem: one is obtained by generalising the notion of orbit-finite set, and the other one is obtained by restricting it. In both cases, function spaces and the original closure properties are retained. Curiously, both solutions are "linear": the generalisation is based on linear algebra, while the restriction is based on linear logic.
- Samson Abramsky. Semantics of interaction. arXiv preprint arXiv:1312.0121, 2013.
- Quentin Aristote. Active learning of deterministic transducers with outputs in arbitrary monoids. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, volume 288 of LIPIcs, pages 11:1–11:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.CSL.2024.11.
- Mikołaj Bojańczyk. Slightly infinite sets. URL: https://www.mimuw.edu.pl/~bojan/paper/atom-book.
- Mikołaj Bojańczyk. Nominal Monoids. Theory Comput. Syst., 53(2):194–222, 2013.
- Automata theory in nominal sets. Logical Methods in Computer Science, 10(3), 2014.
- Orbit-finite-dimensional vector spaces and weighted register automata. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021.
- Single-Use Automata and Transducers for Infinite Alphabets. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 113:1–113:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
- Pierre Clairambault. Causal Investigations in Interactive Semantics. Habilitation à diriger des recherches, Université Aix-Marseille, February 2024. URL: https://pageperso.lis-lab.fr/pierre.clairambault/papers/hdr.pdf.
- Automata minimization: a functorial approach. Logical Methods in Computer Science, 16, 2020.
- Learning automata and transducers: A categorical approach. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference), volume 183 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CSL.2021.15.
- Valeria C. V. de Paiva. The Dialectica categories. In John W. Gray and Andre Scedrov, editors, Categories in Computer Science and Logic, volume 92 of Contemporary Mathematics, pages 47–62. American Mathematical Society, Providence, Rhode Island, 1989. Proceedings of a Summer Research Conference held June 14–20, 1987. doi:10.1090/conm/092/1003194.
- Linear high-order deterministic tree transducers with regular look-ahead. In Javier Esparza and Daniel Král’, editors, 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 38:1–38:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.38.
- Advances in linear logic, volume 222. Cambridge University Press, 1995.
- Peter Hines. A categorical framework for finite state machines. Mathematical Structures in Computer Science, 13(3):451–480, 2003.
- Martin Hyland. Game semantics. In Andrew M. Pitts and P.Editors Dybjer, editors, Semantics and Logics of Computation, Publications of the Newton Institute, page 131–184. Cambridge University Press, 1997. doi:10.1017/CBO9780511526619.005.
- Finite-Memory Automata. Theor. Comput. Sci., 134(2):329–363, 1994.
- Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.
- Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory. PhD thesis, Université Paris XIII (Sorbonne Paris Nord), December 2021. URL: https://theses.hal.science/tel-04132636.
- Implicit automata in typed λ𝜆\lambdaitalic_λ-calculi II: streaming transducers vs categorical semantics. CoRR, abs/2008.01050, 2020. arXiv:2008.01050.
- Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ𝜆\lambdaitalic_λ-calculi I: aperiodicity in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 135:1–135:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.135.
- Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.
- Implicit automata in λ𝜆\lambdaitalic_λ-calculi iii: affine planar string-to-string functions, 2024. arXiv:2404.03985.
- Generalizing determinization from automata to coalgebras. Logical Methods in Computer Science, 9(1), 2013. doi:10.2168/LMCS-9(1:9)2013.
- Rafał Stefański. An automaton model for orbit-finite monoids. Master’s thesis, University of Warsaw, 2018.
- Rafał Stefański. The single-use restriction for register automata and transducers over infinite alphabets. PhD thesis, University of Warsaw, 2023.