Hybrid quantum systems with artificial atoms in solid state (2404.05174v1)
Abstract: The development of single-platform qubits, predominant for most of the last few decades, has driven the progress of quantum information technologies but also highlighted the limitations of various platforms. Some inherent issues such as charge/spin noise in materials hinder certain platforms, while increased decoherence upon attempts to scale-up severely impact qubit quality and coupling on others. In addition, a universal solution for coherent information transfer between quantum systems remains lacking. By combining one or more qubit platforms, one could potentially create new hybrid platforms that might alleviate significant issues that current single platform qubits suffer from, and in some cases, even facilitate the conversion of static to flying qubits on the same hybrid platform. While nascent, this is an area of rising importance that could shed new light on robust and scalable qubit development and provide new impetus for research directions. Here, we define the requirements for hybrid systems with artificial atoms in solid state, exemplify them with systems that have been proposed or attempted, and conclude with our outlook for such hybrid quantum systems.
- M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, 2011.
- D. P. DiVincenzo, Fortschritte der Physik 2000, 48, 9-11 771.
- Science 2021, 372, 6539 eabb2823.
- H. J. Kimble, Nature 2008, 453, 7198 1023.
- Nature Reviews Materials 2021, 6, 10 906.
- PRX Quantum 2021, 2, 1 017002.
- Nature 2004, 430, 6997 329.
- Nature nanotechnology 2021, 16, 12 1318.
- Optica 2020, 7, 4 291.
- Science 2021, 372, 6539 259.
- B. E. Kane, nature 1998, 393, 6681 133.
- Nature communications 2016, 7, 1 12279.
- Reports on Progress in Physics 2011, 74, 10 104401.
- Nature communications 2014, 5, 1 4213.
- New Journal of Physics 2016, 18, 2 023023.
- Reviews of Modern Physics 2022, 94, 1 015004.
- A. Das, B. K. Chakrabarti, Reviews of Modern Physics 2008, 80, 3 1061.
- T. Albash, D. A. Lidar, Reviews of Modern Physics 2018, 90, 1 015002.
- R. Raussendorf, H. J. Briegel, Physical review letters 2001, 86, 22 5188.
- R. Raussendorf, H. J. Briegel, Quantum Information & Computation 2002, 2, 6 443.
- Physical review A 2003, 68, 2 022312.
- Nature Physics 2009, 5, 1 19.
- C. A. Pérez-Delgado, P. Kok, Physical Review A 2011, 83, 1 012303.
- Nature photonics 2020, 14, 5 285.
- C. H. Bennett, G. Brassard, Theoretical computer science 2014, 560 7.
- P. W. Shor, J. Preskill, Physical review letters 2000, 85, 2 441.
- Reviews of modern physics 2002, 74, 1 145.
- Science 2018, 362, 6412 eaam9288.
- Reviews of Modern Physics 2020, 92, 2 025002.
- Physical Review Letters 1998, 81, 26 5932.
- Nature 2001, 414, 6862 413.
- Nature 2008, 454, 7208 1098.
- Nature Photonics 2019, 13, 3 210.
- Nature 2020, 578, 7794 240.
- Nature 2012, 484, 7393 195.
- Science 2012, 337, 6090 72.
- Physical review letters 2017, 119, 1 010402.
- Nature 2007, 449, 7158 68.
- Science 2009, 323, 5913 486.
- Physical review letters 2009, 102, 25 250502.
- Nature Physics 2015, 11, 1 37.
- Physical review letters 2020, 124, 11 110501.
- Nature 2013, 497, 7447 86.
- Nature materials 2015, 14, 2 160.
- Science 2018, 361, 6397 60.
- Science advances 2022, 8, 5 eabm5912.
- Nature 2022, 605, 7911 663.
- Science 2022, 378, 6619 557.
- arXiv preprint arXiv:2310.01316 2023.
- Science 2017, 357, 6358 1392.
- Physical review letters 2018, 120, 24 243601.
- Science 2020, 370, 6516 592.
- Nature 2021, 594, 7861 37.
- Nature 2021, 594, 7861 41.
- Nature 2022, 602, 7897 408.
- Physical Review B 2022, 105, 22 224106.
- Nature Physics 2016, 12, 3 218.
- Physical review letters 2017, 119, 1 010503.
- Reviews of Modern Physics 2011, 83, 1 33.
- E. Waks, C. Monroe, Physical Review A 2009, 80, 6 062330.
- Laser & Photonics Reviews 2022, 16, 3 2100219.
- arXiv preprint arXiv:2309.11448 2023.
- Advanced quantum technologies 2020, 3, 11 1900141.
- Nano letters 2019, 19, 6 3987.
- Physical review applied 2018, 9, 6 064031.
- Nature nanotechnology 2019, 14, 1 23.
- Optica 2019, 6, 5 563.
- Advanced Quantum Technologies 2023, 2300228.
- Nature 2020, 580, 7801 60.
- Physical Review X 2022, 12, 1 011048.
- Nature 2015, 526, 7575 682.
- Journal of Applied Physics 2021, 130, 7.
- Physical Review Letters 2011, 106, 21 210503.
- Physical review letters 2015, 114, 12 123001.
- Nature 2017, 551, 7681 485.
- Applied Physics Letters 2020, 117, 15.
- Reviews of modern physics 2017, 89, 3 035002.
- Nature 2008, 455, 7213 648.
- Science Advances 2022, 8, 31 eabq8158.
- Nano letters 2019, 19, 8 4904.
- Nature Communications 2021, 12, 1 2457.
- Nano letters 2013, 13, 6 2738.
- Current Applied Physics 2018, 18, 9 1066.
- Physical review letters 2014, 112, 4 047601.
- Physical Review Applied 2023, 19, 4 044091.
- Physical Review Applied 2018, 9, 4 044014.
- Science Advances 2023, 9, 20 eadg2080.
- Reports on Progress in Physics 2023.
- Nature communications 2012, 3, 1 1324.
- npj Quantum Information 2020, 6, 1 57.
- New Journal of Physics 2023, 25, 1 013036.
- Qnami ProteusQ™, https://qnami.ch/portfolio/proteusq/, Accessed: 2023-12-07.
- QZabre quantum scanning microscope, https://qzabre.com/en/products/quantum-scanning-microscope, Accessed: 2023-12-07.
- J. Tribollet, The European Physical Journal Applied Physics 2020, 90, 2 20102.
- IEEE Transactions on Quantum Engineering 2021, 2 1.
- Science 2020, 367, 6476 425.
- Nature Physics 2020, 16, 3 257.
- arXiv preprint arXiv:2307.08619 2023.
- Science 2017, 358, 6360 199.
- Nature Physics 2017, 13, 1 44.
- Nature communications 2019, 10, 1 3011.
- Nature communications 2019, 10, 1 5037.
- Physical Review A 2004, 69, 6 062320.
- Science 2017, 355, 6321 156.
- Nature 2018, 555, 7698 599.
- Nature 2020, 577, 7789 195.
- Nature Electronics 2023, 6, 3 235.
- Physical Review Letters 2020, 125, 26 260502.
- Nature 2020, 588, 7839 599.
- Physical Review Applied 2022, 18, 1 014071.
- Science Bulletin 2021, 66, 2 127.
- IEEE Sensors Journal 2023.
- Optics Express 2023, 31, 9 14685.
- ACS sensors 2022, 7, 12 3660.
- National Science Review 2021, 8, 5 nwaa194.
- Nature communications 2014, 5, 1 4065.
- Physical Review Applied 2023, 19, 4 044089.
- Physical Review Applied 2016, 6, 2 024026.
- Nature 2020, 583, 7815 226.
- Nature Nanotechnology 2023, 1–6.
- Nature communications 2018, 9, 1 847.
- Physical review letters 2019, 123, 6 063601.
- Physical Review B 2016, 93, 10 104518.
- Nature 2021, 591, 7851 575.
- npj Quantum Information 2021, 7, 1 173.
- Science 2018, 359, 6380 1123.
- Nature 2018, 560, 7717 179.
- Nature Physics 2023, 1–6.
- Science Advances 2017, 3, 7 e1603150.
- Nature Physics 2021, 17, 12 1420.
- Nature Physics 2019, 15, 5 490.
- Science 2018, 362, 6415 662.
- Nature Photonics 2016, 10, 6 406.
- Nano letters 2015, 15, 8 5131.
- Optics Express 2022, 30, 9 14189.
- Nano letters 2015, 15, 5 2887.
- Physical Review B 2021, 104, 8 085425.
- Physical Review B 2019, 100, 16 165428.
- APL Materials 2019, 7, 1.
- Laser & Photonics Reviews 2016, 10, 6 870.
- Optica 2023, 10, 7 917.
- Nature Photonics 2020, 14, 1 57.
- APL Photonics 2020, 5, 4.
- Optics Express 2020, 28, 22 32894.
- Optica 2019, 6, 4 524.
- Nano letters 2015, 15, 8 5208.
- Nature Communications 2022, 13, 1 6583.
- Nature Communications 2022, 13, 1 2065.
- Physical Review Applied 2016, 6, 1 011001.
- Optics Express 2021, 29, 6 9174.
- Nano Letters 2023, 23, 9 3708.
- Physical Review X 2011, 1, 1 011007.
- Nano letters 2018, 18, 2 1175.
- Optica 2020, 7, 12 1805.
- Optics Express 2023, 31, 2 1516.
- E. Abe, K. Sasaki, Journal of Applied Physics 2018, 123, 16.
- Nano Futures 2019, 3, 4 042004.
- Physical review research 2020, 2, 2 023394.
- Applied Optics 2023, 62, 15 3967.
- Nature communications 2018, 9, 1 3188.
- Physical Review X 2018, 8, 1 011042.
- Nature 2013, 500, 7460 54.
- Nature communications 2014, 5, 1 4429.
- Scientific Reports 2023, 13, 1 6286.
- Nano letters 2017, 17, 3 1496.
- Scientific reports 2020, 10, 1 2483.
- Advanced Quantum Technologies 2021, 4, 4 2000111.
- Applied Physics Letters 2013, 103, 14.
- Laser & Photonics Reviews 2019, 13, 7 1900075.
- APL Materials 2020, 8, 8.
- Optics Express 2022, 30, 11 19573.
- J. I. Cirac, P. Zoller, Physical review letters 1995, 74, 20 4091.
- Applied Physics Reviews 2019, 6, 2.
- Nature Reviews Materials 2021, 6, 10 892.
- Annual Review of Condensed Matter Physics 2020, 11 369.
- Nature Physics 2020, 16, 3 247.
- Reviews of Modern Physics 2021, 93, 2 025005.
- Nature communications 2019, 10, 1 5464.
- PRX Quantum 2021, 2, 4 040202.
- Nature Reviews Materials 2018, 3, 5 38.
- Cavity optomechanics: nano-and micromechanical resonators interacting with light 2014, 327–351.
- Journal of Optics 2017, 19, 3 033001.
- Optica 2019, 6, 2 213.
- Physical review letters 2013, 111, 22 227602.
- Optica 2015, 2, 3 233.
- Physical review letters 2018, 120, 16 167401.
- Physical review letters 2014, 113, 2 020503.
- Physical Review Applied 2016, 6, 3 034005.
- Physical Review Applied 2016, 5, 3 034010.
- Physical review letters 2016, 116, 14 143602.
- Physical Review X 2016, 6, 4 041060.
- Nature communications 2020, 11, 1 193.
- Physical Review X 2022, 12, 1 011056.
- Physical Review Letters 2020, 125, 10 107702.
- Science Advances 2021, 7, 44 eabj5030.
- Physical Review B 2018, 97, 20 205444.
- Nature communications 2014, 5, 1 3638.
- Applied Physics Letters 2018, 112, 14.
- Nano Letters 2021, 21, 24 10392.
- Nature communications 2017, 8, 1 15376.
- Science 2016, 354, 6314 847.
- Nano letters 2010, 10, 8 3168.
- Physical review letters 2018, 120, 21 213603.
- Nature Photonics 2016, 10, 7 489.
- Nature 2016, 536, 7617 441.
- Nature 2023, 616, 7955 50.
- Nature 2023, 616, 7955 56.
- Nature 2019, 567, 7747 209.
- Nature Physics 2021, 17, 3 332.
- Physical Review X 2016, 6, 3 031007.
- Science 2020, 369, 6507 1084.
- Science 2019, 364, 6442 753.
- Nature 2019, 566, 7742 51.
- I. Siddiqi, Nature Reviews Materials 2021, 6, 10 875.
- X. Liu, M. C. Hersam, Nature Reviews Materials 2019, 4, 10 669.
- Physical review letters 2015, 115, 12 127001.
- Physical review letters 2018, 120, 10 100502.
- Nature nanotechnology 2018, 13, 10 915.
- Nature nanotechnology 2019, 14, 2 120.
- Nature materials 2022, 21, 4 398.
- Nano letters 2021, 21, 23 10122.
- Physical review letters 2008, 100, 4 046803.
- Physical review letters 2012, 108, 4 046808.
- Nature communications 2013, 4, 1 2069.
- Physical Review Applied 2019, 11, 4 044063.
- Nature communications 2018, 9, 1 3454.
- Physical Review Applied 2018, 10, 4 044017.
- PRX Quantum 2021, 2, 1 010353.
- Physical review letters 2017, 119, 17 176807.
- Physical review applied 2020, 13, 3 034068.
- Reviews of Modern Physics 2023, 95, 2 025003.
- P. Stano, D. Loss, Nature Reviews Physics 2022, 4, 10 672.
- Nature nanotechnology 2018, 13, 2 102.
- Nature Electronics 2019, 2, 4 151.
- Science Advances 2022, 8, 14 eabn5130.
- Nature 2022, 601, 7893 343.
- Nature 2022, 601, 7893 338.
- Nature 2023, 615, 7954 817.
- Science 2005, 309, 5744 2180.
- Nature Reviews Physics 2020, 2, 3 129.
- Physical Review X 2022, 12, 2 021026.
- arXiv preprint arXiv:2310.16805 2023.
- N. M. Chtchelkatchev, Y. V. Nazarov, Physical review letters 2003, 90, 22 226806.
- C. Padurariu, Y. V. Nazarov, Physical Review B 2010, 81, 14 144519.
- Science 2021, 373, 6553 430.
- PRX Quantum 2022, 3, 3 030311.
- Physical review letters 2023, 131, 9 097001.
- Nature communications 2013, 4, 1 2053.
- Nature Reviews Materials 2016, 1, 11 1.
- Nano Futures 2018, 2, 3 032001.
- Advanced Quantum Technologies 2020, 3, 6 1900123.
- Valleytronics in 2D materials, World Scientific, 2023.
- Physical Review X 2014, 4, 1 011034.
Collections
Sign up for free to add this paper to one or more collections.