Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facial Affective Behavior Analysis with Instruction Tuning (2404.05052v2)

Published 7 Apr 2024 in cs.CV

Abstract: Facial affective behavior analysis (FABA) is crucial for understanding human mental states from images. However, traditional approaches primarily deploy models to discriminate among discrete emotion categories, and lack the fine granularity and reasoning capability for complex facial behaviors. The advent of Multi-modal LLMs (MLLMs) has been proven successful in general visual understanding tasks. However, directly harnessing MLLMs for FABA is challenging due to the scarcity of datasets and benchmarks, neglecting facial prior knowledge, and low training efficiency. To address these challenges, we introduce (i) an instruction-following dataset for two FABA tasks, e.g., emotion and action unit recognition, (ii) a benchmark FABA-Bench with a new metric considering both recognition and generation ability, and (iii) a new MLLM "EmoLA" as a strong baseline to the community. Our initiative on the dataset and benchmarks reveal the nature and rationale of facial affective behaviors, i.e., fine-grained facial movement, interpretability, and reasoning. Moreover, to build an effective and efficient FABA MLLM, we introduce a facial prior expert module with face structure knowledge and a low-rank adaptation module into pre-trained MLLM. We conduct extensive experiments on FABA-Bench and four commonly-used FABA datasets. The results demonstrate that the proposed facial prior expert can boost the performance and EmoLA achieves the best results on our FABA-Bench. On commonly-used FABA datasets, EmoLA is competitive rivaling task-specific state-of-the-art models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yifan Li (106 papers)
  2. Anh Dao (7 papers)
  3. Wentao Bao (19 papers)
  4. Zhen Tan (68 papers)
  5. Tianlong Chen (202 papers)
  6. Huan Liu (283 papers)
  7. Yu Kong (37 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com