Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observational-Interventional Bell Inequalities (2404.05015v1)

Published 7 Apr 2024 in quant-ph

Abstract: Generalizations of Bell's theorem, particularly within quantum networks, are now being analyzed through the causal inference lens. However, the exploration of interventions, a central concept in causality theory, remains significantly unexplored. In this work we give an initial step in this direction, by analyzing the instrumental scenario and proposing novel hybrid Bell inequalities integrating observational and interventional data. Focusing on binary outcomes with any number of inputs, we obtain the complete characterization of the observational-interventional polytope, equivalent to a Hardy-like Bell inequality albeit describing a distinct quantum experiment. To illustrate its applications, we show a significant enhancement regarding threshold detection efficiencies for quantum violations also showing the use of these hybrid approach in quantum steering scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. C. Branciard, N. Gisin, and S. Pironio, Characterizing the nonlocal correlations created via entanglement swapping, Physical review letters 104, 170401 (2010).
  2. T. Fritz, Beyond bell’s theorem: correlation scenarios, New Journal of Physics 14, 103001 (2012).
  3. X. Coiteux-Roy, E. Wolfe, and M.-O. Renou, No bipartite-nonlocal causal theory can explain nature’s correlations, Physical review letters 127, 200401 (2021).
  4. B. F. Toner and D. Bacon, Communication cost of simulating bell correlations, Physical Review Letters 91, 187904 (2003).
  5. J. B. Brask and R. Chaves, Bell scenarios with communication, Journal of Physics A: Mathematical and Theoretical 50, 094001 (2017).
  6. M. Gachechiladze, N. Miklin, and R. Chaves, Quantifying causal influences in the presence of a quantum common cause, Physical Review Letters 125, 230401 (2020).
  7. J. Pearl, Causality (Cambridge university press, 2009).
  8. A. Balke and J. Pearl, Bounds on treatment effects from studies with imperfect compliance, Journal of the American Statistical Association 92, 1171 (1997).
  9. B. Bonet, Instrumentality tests revisited, arXiv preprint arXiv:1301.2258  (2013).
  10. Z. Cao, Detection loophole in quantum causality and its countermeasures, Physical Review A 104, L010201 (2021).
  11. J. Pearl, On the testability of causal models with latent and instrumental variables, in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence (1995) pp. 435–443.
  12. D. Kédagni and I. Mourifié, Generalized instrumental inequalities: testing the instrumental variable independence assumption, Biometrika 107, 661 (2020).
  13. D. Cavalcanti and P. Skrzypczyk, Quantum steering: a review with focus on semidefinite programming, Reports on Progress in Physics 80, 024001 (2016).
  14. J. Henson, R. Lal, and M. F. Pusey, Theory-independent limits on correlations from generalized bayesian networks, New Journal of Physics 16, 113043 (2014).
  15. M. Navascués, S. Pironio, and A. Acín, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations, New Journal of Physics 10, 073013 (2008).
  16. P. H. Eberhard, Background level and counter efficiencies required for a loophole-free einstein-podolsky-rosen experiment, Physical Review A 47, R747 (1993).
  17. L. Hardy, Nonlocality for two particles without inequalities for almost all entangled states, Phys. Rev. Lett. 71, 1665 (1993).
  18. R. Chaves and J. B. Brask, Feasibility of loophole-free nonlocality tests with a single photon, Physical Review A 84, 062110 (2011).
  19. C. Branciard, Detection loophole in bell experiments: How postselection modifies the requirements to observe nonlocality, Physical Review A 83, 032123 (2011).
  20. S. Pironio, All clauser-horne-shimony-holt polytopes, Journal of Physics A: Mathematical and Theoretical 47, 424020 (2014).
  21. L. Mančinska and S. Wehner, A unified view on hardy’s paradox and the clauser-horne-shimony-holt inequality, Journal of Physics A: Mathematical and Theoretical 47, 424027 (2014).
  22. S. Mansfield and T. Fritz, Hardy’s non-locality paradox and possibilistic conditions for non-locality, Foundations of Physics 42, 709 (2012).
  23. G. Ghirardi and L. Marinatto, Proofs of nonlocality without inequalities revisited, Physics Letters A 372, 1982 (2008).
  24. D. Rosset, N. Gisin, and E. Wolfe, Universal bound on the cardinality of local hidden variables in networks, arXiv preprint arXiv:1709.00707  (2017).
  25. T. C. Fraser, A combinatorial solution to causal compatibility, Journal of Causal Inference 8, 22 (2020).
  26. J. Barrett, R. Lorenz, and O. Oreshkov, Quantum causal models, arXiv preprint arXiv:1906.10726  (2019).
  27. C. H. Bennett and S. J. Wiesner, Communication via one-and two-particle operators on einstein-podolsky-rosen states, Physical review letters 69, 2881 (1992).
  28. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Physical review letters 86, 5188 (2001).
  29. C. J. Wood and R. W. Spekkens, The lesson of causal discovery algorithms for quantum correlations: causal explanations of bell-inequality violations require fine-tuning, New Journal of Physics 17, 033002 (2015).
  30. R. Chaves, C. Majenz, and D. Gross, Information–theoretic implications of quantum causal structures, Nature communications 6, 5766 (2015b).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com