Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Sample Complexity of Gradient Descent in Stochastic Convex Optimization (2404.04931v2)

Published 7 Apr 2024 in cs.LG and math.OC

Abstract: We analyze the sample complexity of full-batch Gradient Descent (GD) in the setup of non-smooth Stochastic Convex Optimization. We show that the generalization error of GD, with common choice of hyper-parameters, can be $\tilde \Theta(d/m + 1/\sqrt{m})$, where $d$ is the dimension and $m$ is the sample size. This matches the sample complexity of \emph{worst-case} empirical risk minimizers. That means that, in contrast with other algorithms, GD has no advantage over naive ERMs. Our bound follows from a new generalization bound that depends on both the dimension as well as the learning rate and number of iterations. Our bound also shows that, for general hyper-parameters, when the dimension is strictly larger than number of samples, $T=\Omega(1/\epsilon4)$ iterations are necessary to avoid overfitting. This resolves an open problem by Schlisserman et al.23 and Amir er Al.21, and improves over previous lower bounds that demonstrated that the sample size must be at least square root of the dimension.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets