Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Holographic Integrated Data and Energy Transfer (2404.04927v2)

Published 7 Apr 2024 in cs.IT and math.IT

Abstract: Thanks to the application of metamaterials, holographic multiple-input multiple-output (H-MIMO) is expected to achieve a higher spatial diversity gain by enabling the ability to generate any current distribution on the surface. With the aid of electromagnetic (EM) manipulation capability of H-MIMO, integrated data and energy transfer (IDET) system can fully exploits the EM channel to realize energy focusing and eliminate inter-user interference, which yields the concept of holographic IDET (H-IDET). In this paper, we invetigate the beamforming designs for H-IDET systems, where the sum-rate of data users (DUs) are maximized by guaranteeing the energy harvesting requirements of energy users (EUs). In order to solve the non-convex functional programming, a block coordinate descent (BCD) based scheme is proposed, wherein the Fourier transform and the equivalence between the signal-to-interference-plus-noise ratio (SINR) and the mean-square error (MSE) are also conceived, followed by the successive convex approximation (SCA) and an initialization scheme to enhance robustness. Numerical results illustrate that our proposed H-IDET scheme outperforms benchmark schemes, especially the one adopting traditional discrete antennas. Besides, the near-field focusing using EM channel model achieves better performance compared to that using the traditional channel model, especially for WPT where the EUs are usually close to the transmitter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. M. Jouhari, N. Saeed, M.-S. Alouini, and E. M. Amhoud, “A survey on scalable lorawan for massive IoT: Recent advances, potentials, and challenges,” IEEE Communications Surveys & Tutorials, vol. 25, no. 3, pp. 1841–1876, 2023.
  2. 3GPP, “Study on solutions for Ambient IoT (Internet of Things) in NR,” Tech. Rep. RP-234058, 3rd Generation Partnership Project (3GPP), 11 2023. Available: https://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN/Inbox/RP-234058.zip.
  3. J. Hu, K. Yang, G. Wen, and L. Hanzo, “Integrated data and energy communication network: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3169–3219, 2018.
  4. J. Hu, Q. Wang, and K. Yang, “Energy self-sustainability in full-spectrum 6G,” IEEE Wireless Communications, vol. 28, no. 1, pp. 104–111, 2021.
  5. H. Zhang, H. Zhang, B. Di, M. D. Renzo, Z. Han, H. V. Poor, and L. Song, “Holographic integrated sensing and communication,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2114–2130, 2022.
  6. C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 5, pp. 118–125, 2020.
  7. J. Zhou, P. Zhang, J. Han, L. Li, and Y. Huang, “Metamaterials and metasurfaces for wireless power transfer and energy harvesting,” Proceedings of the IEEE, vol. 110, no. 1, pp. 31–55, 2022.
  8. K. Xiong, B. Wang, and K. J. R. Liu, “Rate-energy region of SWIPT for MIMO broadcasting under nonlinear energy harvesting model,” IEEE Transactions on Wireless Communications, vol. 16, no. 8, pp. 5147–5161, 2017.
  9. Q. Yue, J. Hu, K. Yang, and C. Huang, “Transceiver design for simultaneous wireless information and power multicast in multi-user mmwave MIMO system,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11394–11407, 2020.
  10. Y. Gao, Q. Wu, G. Zhang, W. Chen, D. W. K. Ng, and M. D. Renzo, “Beamforming optimization for active intelligent reflecting surface-aided SWIPT,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 362–378, 2023.
  11. R. Zhang, K. Xiong, Y. Lu, P. Fan, D. W. K. Ng, and K. B. Letaief, “Energy efficiency maximization in ris-assisted SWIPT networks with rsma: A PPO-based approach,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 5, pp. 1413–1430, 2023.
  12. D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl., vol. 8, p. 054048, Nov 2017.
  13. R. Deng, Y. Zhang, H. Zhang, B. Di, H. Zhang, H. V. Poor, and L. Song, “Reconfigurable holographic surfaces for ultra-massive MIMO in 6G: Practical design, optimization and implementation,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2367–2379, 2023.
  14. R. Deng, B. Di, H. Zhang, Y. Tan, and L. Song, “Reconfigurable holographic surface-enabled multi-user wireless communications: Amplitude-controlled holographic beamforming,” IEEE Transactions on Wireless Communications, vol. 21, no. 8, pp. 6003–6017, 2022.
  15. R. Deng, B. Di, H. Zhang, H. V. Poor, and L. Song, “Holographic MIMO for LEO satellite communications aided by reconfigurable holographic surfaces,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 10, pp. 3071–3085, 2022.
  16. N. Shlezinger, O. Dicker, Y. C. Eldar, I. Yoo, M. F. Imani, and D. R. Smith, “Dynamic metasurface antennas for uplink massive MIMO systems,” IEEE Transactions on Communications, vol. 67, no. 10, pp. 6829–6843, 2019.
  17. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Beam focusing for near-field multiuser MIMO communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 7476–7490, 2022.
  18. M. E. Badawe, T. S. Almoneef, and O. M. Ramahi, “A true metasurface antenna,” Scientific Reports, vol. 6, no. 1, pp. 2045–2322, 2016.
  19. S. Hu, F. Rusek, and O. Edfors, “Beyond massive MIMO: The potential of data transmission with large intelligent surfaces,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2746–2758, 2018.
  20. D. Dardari, “Communicating with large intelligent surfaces: Fundamental limits and models,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2526–2537, 2020.
  21. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 6890–6905, 2022.
  22. L. Sanguinetti, A. A. D’Amico, and M. Debbah, “Wavenumber-division multiplexing in line-of-sight holographic MIMO communications,” IEEE Transactions on Wireless Communications, vol. 22, no. 4, pp. 2186–2201, 2023.
  23. Z. Zhang and L. Dai, “Pattern-division multiplexing for multi-user continuous-aperture MIMO,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2350–2366, 2023.
  24. L. Wei, C. Huang, G. C. Alexandropoulos, Z. Yang, J. Yang, W. E. I. Sha, Z. Zhang, M. Debbah, and C. Yuen, “Tri-polarized holographic MIMO surfaces for near-field communications: Channel modeling and precoding design,” IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp. 8828–8842, 2023.
  25. X. Wu, F. Hou, Y. Li, S. Zhao, S. Zhang, H. Xue, M. Chang, J. Han, H. Liu, and L. Li, “Multitarget wireless power transfer system strategy based on metasurface-holography multifocal beams,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 8, pp. 3479–3489, 2023.
  26. P. Zhang, L. Li, X. Zhang, H. Liu, and Y. Shi, “Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer,” IEEE Access, vol. 7, pp. 110387–110399, 2019.
  27. S. Zhao, H. Xue, S. Zhang, and L. Li, “Shared-aperture dual-frequency multiplexing holographic metasurface for simultaneous wireless information and power transfer,” in 2023 16th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), vol. 1, pp. 1–3, 2023.
  28. F. K. Gruber and E. A. Marengo, “New aspects of electromagnetic information theory for wireless and antenna systems,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3470–3484, 2008.
  29. A. Poon, R. Brodersen, and D. Tse, “Degrees of freedom in multiple-antenna channels: a signal space approach,” IEEE Transactions on Information Theory, vol. 51, no. 2, pp. 523–536, 2005.
  30. J. Sherman, “Properties of focused apertures in the fresnel region,” IRE Transactions on Antennas and Propagation, vol. 10, no. 4, pp. 399–408, 1962.
  31. D. Palomar, J. Cioffi, and M. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization,” IEEE Transactions on Signal Processing, vol. 51, no. 9, pp. 2381–2401, 2003.
  32. D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
  33. Q. Yue, J. Hu, T. Shui, Q. Huang, K. Yang, and L. Hanzo, “Hybrid terahertz beamforming relying on channel sparsity and angular orthogonality,” IEEE Transactions on Vehicular Technology, pp. 1–14, 2023.
  34. M. Razaviyayn, “Successive convex approximation: Analysis and applications,” 2014.
  35. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,” Linear Algebra and its Applications, vol. 284, no. 1, pp. 193–228, 1998. International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing.
  36. K. Shen and W. Yu, “Fractional programming for communication systems. part i: Power control and beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018.
  37. J. Yuan, H. Q. Ngo, and M. Matthaiou, “Towards large intelligent surface (LIS)-based communications,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6568–6582, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com