Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analog-Digital Beam Focusing for Line of Sight Wide-Aperture MIMO with Spherical Wavefronts (2404.04842v1)

Published 7 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: Enhancing high-speed wireless communication in the future relies significantly on harnessing high frequency bands effectively. These bands predominantly operate in line-of-sight (LoS) paths, necessitating well-configured antenna arrays and beamforming techniques for optimal spectrum utilization. Maximizing the potential of LoS multiple-input multiple-output (MIMO) systems, which are crucial for achieving high spectral efficiency, heavily depends on this. As the costs and power demands of mixed-signal devices in high frequency bands make a fully-digital architecture impractical for large-scale MIMO setups, our focus shifts to a hybrid analog-digital hardware configuration. Yet, analog processors' limitations restrict flexibility within arrays, necessitating a nuanced understanding of hardware constraints for optimal antenna configuration design. We explore array design that optimizes the spectral efficiency of hybrid systems, considering hardware constraints. We propose an optimal antenna configuration, leveraging the prolate matrix structure of the LoS channel between two planar arrays. Building on the optimal array configuration, we introduce a low-complexity explicit analog-digital beam focusing scheme that exploits the asymptotic behavior of the LoS channel matrix in the near-field region. Simulation results validate that the proposed antenna configuration and beam focusing scheme achieves near-optimal performance across a range of signal-to-noise ratios with low computational complexity, even under arbitrary rotations relative to the communication link.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication, vol. 12, pp. 16–32, 2014.
  2. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  3. F. Bohagen, P. Orten, and G. E. Oien, “On spherical vs. plane wave modeling of line-of-sight MIMO channels,” IEEE Transactions on Communications, vol. 57, no. 3, pp. 841–849, Mar. 2009.
  4. S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110–121, Dec. 2014.
  5. H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Terahertz-band ultra-massive spatial modulation MIMO,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 9, pp. 2040–2052, Sept. 2019.
  6. D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “Outdoor MIMO wireless channels: Models and performance prediction,” IEEE Transactions on Communications, vol. 50, no. 12, pp. 1926–1934, Dec. 2002.
  7. H. Do, N. Lee, and A. Lozano, “Reconfigurable ulas for line-of-sight mimo transmission,” IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 2933–2947, 2020.
  8. P. Larsson, “Lattice array receiver and sender for spatially orthonormal MIMO communication,” in IEEE Vehicular Technology Conference, 2005.
  9. X. Song and G. Fettweis, “On spatial multiplexing of strong line-of-sight MIMO with 3D antenna arrangements,” IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 393–396, Aug. 2015.
  10. E. Torkildson, U. Madhow, and M. Rodwell, “Indoor millimeter wave MIMO: Feasibility and performance,” IEEE Transactions on Wireless Communications, vol. 10, no. 12, pp. 4150–4160, Dec. 2011.
  11. M. M. Mojahedian and A. Lozano, “Precoding and reception for ula-based wide-aperture MIMO,” IEEE Wireless Communications Letters, vol. 12, no. 4, pp. 654–658, Apr. 2023.
  12. M. Palaiologos, M. H. C. García, A. Kakkavas, R. A. Stirling-Gallacher, and G. Caire, “Non-uniform array design for robust los mimo via convex optimization,” in 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).   IEEE, 2023, pp. 1–6.
  13. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 501–513, Apr. 2016.
  14. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6g extreme massive mimo communications,” IEEE Wireless Communications, vol. 28, no. 2, pp. 106–113, 2021.
  15. I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, “A survey on hybrid beamforming techniques in 5g: Architecture and system model perspectives,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3060–3097, 2018.
  16. J. Zhang, X. Yu, and K. B. Letaief, “Hybrid beamforming for 5g and beyond millimeter-wave systems: A holistic view,” IEEE Open Journal of the Communications Society, vol. 1, pp. 77–91, 2019.
  17. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Beam focusing for near-field multiuser MIMO communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 7476–7490, Sept. 2022.
  18. Z. Wu, M. Cui, Z. Zhang, and L. Dai, “Distance-aware precoding for near-field capacity improvement in xl-mimo,” in 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring).   IEEE, 2022, pp. 1–5.
  19. M. Cui and L. Dai, “Near-field channel estimation for extremely large-scale mimo with hybrid precoding,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021, pp. 1–6.
  20. K. Dovelos, M. Matthaiou, H. Q. Ngo, and B. Bellalta, “Channel estimation and hybrid combining for wideband terahertz massive mimo systems,” IEEE Journal on selected Areas in communications, vol. 39, no. 6, pp. 1604–1620, 2021.
  21. X. Zhang, H. Zhang, and Y. C. Eldar, “Near-field sparse channel representation and estimation in 6g wireless communications,” IEEE Transactions on Communications, 2023.
  22. X. Zhang, Z. Wang, H. Zhang, and L. Yang, “Near-field channel estimation for extremely large-scale array communications: A model-based deep learning approach,” IEEE Communications Letters, 2023.
  23. A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE Journal on selected areas in Communications, vol. 21, no. 5, pp. 684–702, Jun. 2003.
  24. Z. Zhu, S. Karnik, M. A. Davenport, J. Romberg, and M. B. Wakin, “The eigenvalue distribution of discrete periodic time-frequency limiting operators,” IEEE Signal Processing Letters, vol. 25, no. 1, pp. 95–99, Jan. 2017.
  25. M. Di Renzo, D. Dardari, and N. Decarli, “Los mimo-arrays vs. los mimo-surfaces,” in 2023 17th European Conference on Antennas and Propagation (EuCAP).   IEEE, 2023, pp. 1–5.
  26. K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1950–1962, 2020.
  27. O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE transactions on wireless communications, vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
  28. A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Communications Magazine, vol. 52, no. 12, pp. 122–131, Dec. 2014.
  29. J. Gutiérrez-Gutiérrez, P. M. Crespo et al., “Block toeplitz matrices: Asymptotic results and applications,” Foundations and Trends® in Communications and Information Theory, vol. 8, no. 3, pp. 179–257, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com