Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier Transform-based Wavenumber Domain 3D Imaging in RIS-aided Communication Systems (2404.04783v1)

Published 7 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: Radio imaging is rapidly gaining prominence in the design of future communication systems, with the potential to utilize reconfigurable intelligent surfaces (RISs) as imaging apertures. Although the sparsity of targets in three-dimensional (3D) space has led most research to adopt compressed sensing (CS)-based imaging algorithms, these often require substantial computational and memory burdens. Drawing inspiration from conventional Fourier transform (FT)-based imaging methods, our research seeks to accelerate radio imaging in RIS-aided communication systems. To begin, we introduce a two-stage wavenumber domain 3D imaging technique: first, we modify RIS phase shifts to recover the equivalent channel response from the user equipment to the RIS array, subsequently employing traditional FT-based wavenumber domain methods to produce target images. We also determine the diffraction resolution limits of the system through k-space analysis, taking into account factors including system bandwidth, transmission direction, operating frequency, and the angle subtended by the RIS. Addressing the challenge of limited pilots in communication systems, we unveil an innovative algorithm that merges the strengths of both FT- and CS-based techniques by substituting the expansive sensing matrix with FT-based operators. Our simulation outcomes confirm that our proposed FT-based methods achieve high-quality images while demanding few time, memory, and communication resources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  2. X. Li, G. Zhu, Y. Gong, and K. Huang, “Wirelessly powered data aggregation for IoT via over-the-air function computation: Beamforming and power control,” IEEE Trans. Wireless Commun., vol. 18, no. 7, pp. 3437–3452, Jul. 2019.
  3. J. Yang, C.-K. Wen, and S. Jin, “Hybrid active and passive sensing for SLAM in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2146–2163, Jul. 2022.
  4. N. Mehrotra and A. Sabharwal, “On the degrees of freedom region for simultaneous imaging & uplink communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1768–1779, Jun. 2022.
  5. B. Zhang, W. Hong, and Y. Wu, “Sparse microwave imaging: Principles and applications,” Sci. China Inf. Sci., vol. 55, no. 8, pp. 1722–1754, Jul. 2012.
  6. M. F. Imani et al., “Review of metasurface antennas for computational microwave imaging,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1860–1875, Mar. 2020.
  7. Y. Huang, J. Yang, W. Tang, C.-K. Wen, S. Xia, and S. Jin, “Joint localization and environment sensing by harnessing NLOS components in RIS-aided mmWave communication systems,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8797–8813, Dec. 2023.
  8. X. Li, F. Liu, Z. Zhou, G. Zhu, S. Wang, K. Huang, and Y. Gong, “Integrated sensing, communication, and computation over-the-air: MIMO beamforming design,” IEEE Trans. Wireless Commun., vol. 22, no. 8, pp. 5383–5398, Jan. 2023.
  9. R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1747–1751, Dec. 2016.
  10. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 9, pp. 1581–1592, Sep. 2001.
  11. J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 728–737, May, 2000.
  12. X. Zhuge and A. G. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process., vol. 21, no. 6, pp. 3026–3033, Jun. 2012.
  13. X. Tong, Z. Zhang, J. Wang, C. Huang, and M. Debbah, “Joint multi-user communication and sensing exploiting both signal and environment sparsity,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1409–1422, Nov. 2021.
  14. Y. Huang, J. Yang, C.-K. Wen, and S. Jin, “RIS-aided single-frequency 3D imaging by exploiting multi-view image correlations,” IEEE Trans. Commun., Early Access, Mar. 2024.
  15. M. Çetin et al., “Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing,” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 27–40, Jul. 2014.
  16. W. Tang et al., “Path loss modeling and measurements for reconfigurable intelligent surfaces in the millimeter-wave frequency band,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6259–6276, Sep. 2022.
  17. W. Chen, C.-K. Wen, X. Li, M. Matthaiou, and S. Jin, “Channel customization for limited feedback in RIS-assisted FDD systems,” IEEE Trans. Wireless Commun., vol. 22, no. 7, pp. 4505–4519, Jul. 2023.
  18. A. Aubry, A. De Maio, and M. Rosamilia, “Reconfigurable intelligent surfaces for N-LOS radar surveillance,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10 735–10 749, Oct. 2021.
  19. J. Wang, W. Tang, J. C. Liang, L. Zhang, J. Y. Dai, X. Li, S. Jin, Q. Cheng, and T. J. Cui, “Reconfigurable intelligent surface: Power consumption modeling and practical measurement validation,” IEEE Trans. Commun., Early Access, Mar. 2024.
  20. J. Fang, Z. Xu, B. Zhang, W. Hong, and Y. Wu, “Fast compressed sensing SAR imaging based on approximated observation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 1, pp. 352–363, Jan. 2014.
  21. J. Hu, H. Zhang, K. Bian, Z. Han, H. V. Poor, and L. Song, “Metasketch: Wireless semantic segmentation by reconfigurable intelligent surfaces,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 5916–5929, Aug. 2022.
  22. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Amer. B, vol. 33, no. 10, pp. 2082–2092, Oct. 2016.
  23. H. Bi, J. Wang, and G. Bi, “Wavenumber domain algorithm-based FMCW SAR sparse imaging,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10, pp. 7466–7475, Oct. 2019.
  24. T. Fromenteze, O. Yurduseven, P. Del Hougne, and D. R. Smith, “Lowering latency and processing burden in computational imaging through dimensionality reduction of the sensing matrix,” Sci. Rep., vol. 11, Feb. 2021, Art. no. 3545.
  25. T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), Mar. 2017, pp. 1415–1418.
  26. X. Lin, J. Li, R. Baldemair, J.-F. T. Cheng, S. Parkvall, D. C. Larsson, H. Koorapaty, M. Frenne, S. Falahati, A. Grovlen et al., “5G new radio: Unveiling the essentials of the next generation wireless access technology,” IEEE Commun. Stand. Mag., vol. 3, no. 3, pp. 30–37, Sep. 2019.
  27. Z. Wei, Y. Wang, L. Ma, S. Yang, Z. Feng, C. Pan, Q. Zhang, Y. Wang, H. Wu, and P. Zhang, “5G PRS-based sensing: A sensing reference signal approach for joint sensing and communication system,” IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3250–3263, Mar. 2023.
  28. S. Lu, F. Liu, F. Dong, Y. Xiong, J. Xu, Y.-F. Liu, and S. Jin, “Random ISAC signals deserve dedicated precoding,” [Online]. Available: https://arxiv.org/abs/2311.01822.
  29. B. Zheng and F. Liu, “Waveform design for joint communication and SAR imaging under random signaling,” [Online]. Available: https://arxiv.org/abs/2403.17627.
  30. Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals toward 5G-A and 6G: A survey,” IEEE Internet Things J., vol. 10, no. 13, pp. 11 068–11 092, Jul. 2023.
  31. X. Wang, Y. Huang, J. Yang, Y. Han, and S. Jin, “Reconfigurable intelligent surface aided integrated communication and localization with a single access point,” China Commun., [Online]. Available: http://www.cic-chinacommunications.cn, Apr. 2023.
  32. A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 730–735, May 1998.
  33. J. Zhou, R. Zhu, G. Jiang, L. Zhao, and B. Cheng, “A precise wavenumber domain algorithm for near range microwave imaging by cross MIMO array,” IEEE Trans. Microwave Theory Tech., vol. 67, no. 4, pp. 1316–1326, Apr. 2019.
  34. S. Zhou and L. Jiang, “Modern description of Rayleigh’s criterion,” Phys. Rev. A, vol. 99, no. 1, Jan. 2019, Art. no. 013808.
  35. M. Aladsani, A. Alkhateeb, and G. C. Trichopoulos, “Leveraging mmWave imaging and communications for simultaneous localization and mapping,” in Proc. IEEE ICASSP, May 2019, pp. 4539–4543.
  36. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Aug. 2004.
  37. T. Blumensath and M. E. Davies, “Normalized iterative hard thresholding: Guaranteed stability and performance,” IEEE J. Sel. Top. Signal Process., vol. 4, no. 2, pp. 298–309, Apr. 2010.
Citations (1)

Summary

We haven't generated a summary for this paper yet.