Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power-Efficient Image Storage: Leveraging Super Resolution Generative Adversarial Network for Sustainable Compression and Reduced Carbon Footprint (2404.04642v1)

Published 6 Apr 2024 in eess.IV, cs.AI, and cs.LG

Abstract: In recent years, large-scale adoption of cloud storage solutions has revolutionized the way we think about digital data storage. However, the exponential increase in data volume, especially images, has raised environmental concerns regarding power and resource consumption, as well as the rising digital carbon footprint emissions. The aim of this research is to propose a methodology for cloud-based image storage by integrating image compression technology with SuperResolution Generative Adversarial Networks (SRGAN). Rather than storing images in their original format directly on the cloud, our approach involves initially reducing the image size through compression and downsizing techniques before storage. Upon request, these compressed images will be retrieved and processed by SRGAN to generate images. The efficacy of the proposed method is evaluated in terms of PSNR and SSIM metrics. Additionally, a mathematical analysis is given to calculate power consumption and carbon footprint assesment. The proposed data compression technique provides a significant solution to achieve a reasonable trade off between environmental sustainability and industrial efficiency.

Summary

We haven't generated a summary for this paper yet.