Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Accurate Bayesian Optimization with Pre-trained Transformers for Constrained Engineering Problems (2404.04495v1)

Published 6 Apr 2024 in cs.CE

Abstract: Bayesian Optimization (BO) is a foundational strategy in the field of engineering design optimization for efficiently handling black-box functions with many constraints and expensive evaluations. This paper introduces a fast and accurate BO framework that leverages Pre-trained Transformers for Bayesian Optimization (PFN4sBO) to address constrained optimization problems in engineering. Unlike traditional BO methods that rely heavily on Gaussian Processes (GPs), our approach utilizes Prior-data Fitted Networks (PFNs), a type of pre-trained transformer, to infer constraints and optimal solutions without requiring any iterative retraining. We demonstrate the effectiveness of PFN-based BO through a comprehensive benchmark consisting of fifteen test problems, encompassing synthetic, structural, and engineering design challenges. Our findings reveal that PFN-based BO significantly outperforms Constrained Expected Improvement and Penalty-based GP methods by an order of magnitude in speed while also outperforming them in accuracy in identifying feasible, optimal solutions. This work showcases the potential of integrating machine learning with optimization techniques in solving complex engineering challenges, heralding a significant leap forward for optimization methodologies, opening up the path to using PFN-based BO to solve other challenging problems, such as enabling user-guided interactive BO, adaptive experiment design, or multi-objective design optimization. Additionally, we establish a benchmark for evaluating BO algorithms in engineering design, offering a robust platform for future research and development in the field. This benchmark framework for evaluating new BO algorithms in engineering design will be published at https://github.com/rosenyu304/BOEngineeringBenchmark.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Bagheri S, Konen W, Allmendinger R, et al (2017) Constraint handling in efficient global optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp 673–680 Bajaj et al [2021] Bajaj I, Arora A, Hasan MF (2021) Black-box optimization: Methods and applications. In: Black box optimization, machine learning, and no-free lunch theorems. Springer, p 35–65 Balandat et al [2020] Balandat M, Karrer B, Jiang DR, et al (2020) BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In: Advances in Neural Information Processing Systems 33, URL https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html Baptista and Poloczek [2018] Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Bajaj I, Arora A, Hasan MF (2021) Black-box optimization: Methods and applications. In: Black box optimization, machine learning, and no-free lunch theorems. Springer, p 35–65 Balandat et al [2020] Balandat M, Karrer B, Jiang DR, et al (2020) BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In: Advances in Neural Information Processing Systems 33, URL https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html Baptista and Poloczek [2018] Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Balandat M, Karrer B, Jiang DR, et al (2020) BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In: Advances in Neural Information Processing Systems 33, URL https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html Baptista and Poloczek [2018] Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  2. Bajaj I, Arora A, Hasan MF (2021) Black-box optimization: Methods and applications. In: Black box optimization, machine learning, and no-free lunch theorems. Springer, p 35–65 Balandat et al [2020] Balandat M, Karrer B, Jiang DR, et al (2020) BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In: Advances in Neural Information Processing Systems 33, URL https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html Baptista and Poloczek [2018] Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Balandat M, Karrer B, Jiang DR, et al (2020) BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In: Advances in Neural Information Processing Systems 33, URL https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html Baptista and Poloczek [2018] Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  3. Balandat M, Karrer B, Jiang DR, et al (2020) BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In: Advances in Neural Information Processing Systems 33, URL https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html Baptista and Poloczek [2018] Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  4. Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, PMLR, pp 462–471 Biswas and Hoyle [2021] Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  5. Biswas A, Hoyle C (2021) An approach to bayesian optimization for design feasibility check on discontinuous black-box functions. Journal of Mechanical Design 143(3):031716 Blank and Deb [2020] Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  6. Blank J, Deb K (2020) Pymoo: Multi-objective optimization in python. Ieee access 8:89497–89509 Cardoso et al [2024] Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  7. Cardoso I, Dubreuil S, Bartoli N, et al (2024) Constrained efficient global multidisciplinary design optimization using adaptive disciplinary surrogate enrichment. Structural and Multidisciplinary Optimization 67(2):23 Cho et al [2020] Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  8. Cho H, Kim Y, Lee E, et al (2020) Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks. IEEE access 8:52588–52608 Cowen-Rivers et al [2022] Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  9. Cowen-Rivers AI, Lyu W, Tutunov R, et al (2022) Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research 74:1269–1349 Cunningham et al [2008] Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  10. Cunningham JP, Shenoy KV, Sahani M (2008) Fast gaussian process methods for point process intensity estimation. In: Proceedings of the 25th international conference on Machine learning, pp 192–199 Du et al [2023] Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  11. Du X, Liang J, Lei J, et al (2023) A radial-basis function mesh morphing and bayesian optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary Optimization 66(3):64 Eriksson and Poloczek [2021] Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  12. Eriksson D, Poloczek M (2021) Scalable constrained bayesian optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp 730–738 Fletcher [1975] Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  13. Fletcher R (1975) An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics 15(3):319–342 Foreman-Mackey et al [2017] Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  14. Foreman-Mackey D, Agol E, Ambikasaran S, et al (2017) Fast and scalable gaussian process modeling with applications to astronomical time series. The Astronomical Journal 154(6):220 Gandomi et al [2011] Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  15. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Computers & Structures 89(23-24):2325–2336 Gardner et al [2017] Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  16. Gardner J, Guo C, Weinberger K, et al (2017) Discovering and exploiting additive structure for bayesian optimization. In: Artificial Intelligence and Statistics, PMLR, pp 1311–1319 Gardner et al [2014] Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  17. Gardner JR, Kusner MJ, Xu ZE, et al (2014) Bayesian optimization with inequality constraints. In: ICML, pp 937–945 Garnett [2015] Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  18. Garnett R (2015) Lecture 12 bayesian optimization. Lecture Notes in CSE515T: Bayesian Methods in Machine Learning Garnett [2023] Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  19. Garnett R (2023) Bayesian optimization. Cambridge University Press Gelbart et al [2014] Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  20. Gelbart MA, Snoek J, Adams RP (2014) Bayesian optimization with unknown constraints. arXiv preprint arXiv:14035607 Ghoreishi and Allaire [2019] Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  21. Ghoreishi SF, Allaire D (2019) Multi-information source constrained bayesian optimization. Structural and Multidisciplinary Optimization 59:977–991 Gilboa et al [2013] Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  22. Gilboa E, Saatçi Y, Cunningham JP (2013) Scaling multidimensional inference for structured gaussian processes. IEEE transactions on pattern analysis and machine intelligence 37(2):424–436 Golinski [1973] Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  23. Golinski J (1973) An adaptive optimization system applied to machine synthesis. Mechanism and Machine Theory 8(4):419–436 Greenhill et al [2020] Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  24. Greenhill S, Rana S, Gupta S, et al (2020) Bayesian optimization for adaptive experimental design: A review. IEEE access 8:13937–13948 Gu et al [2001] Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  25. Gu L, Yang R, Tho CH, et al (2001) Optimisation and robustness for crashworthiness of side impact. International journal of vehicle design 26(4):348–360 Hansen et al [2021] Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  26. Hansen N, Auger A, Ros R, et al (2021) Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software 36(1):114–144 Hansen et al [2022] Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  27. Hansen N, Auger A, Brockhoff D, et al (2022) Anytime performance assessment in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26(6):1293–1305 Ismail Fawaz et al [2019] Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  28. Ismail Fawaz H, Forestier G, Weber J, et al (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963 Jetton et al [2023] Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  29. Jetton C, Li C, Hoyle C (2023) Constrained bayesian optimization methods using regression and classification gaussian processes as constraints. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p V03BT03A033 Jetton et al [2024] Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  30. Jetton C, Campbell M, Hoyle C (2024) Constraining the feasible design space in bayesian optimization with user feedback. Journal of Mechanical Design 146:041703–1 Kamrah et al [2023] Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  31. Kamrah E, Ghoreishi SF, Ding ZJ, et al (2023) How diverse initial samples help and hurt bayesian optimizers. Journal of Mechanical Design 145(11):111703 Keane [1994] Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  32. Keane A (1994) Experiences with optimizers in structural design. In: Proceedings of the conference on adaptive computing in engineering design and control, pp 14–27 Klein et al [2017] Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  33. Klein A, Falkner S, Bartels S, et al (2017) Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artificial intelligence and statistics, PMLR, pp 528–536 Koziel and Yang [2011] Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  34. Koziel S, Yang XS (2011) Computational optimization, methods and algorithms, vol 356. Springer Liang et al [2021] Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  35. Liang Q, Gongora AE, Ren Z, et al (2021) Benchmarking the performance of bayesian optimization across multiple experimental materials science domains. npj Computational Materials 7(1):188 Liu et al [2020] Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  36. Liu H, Ong YS, Shen X, et al (2020) When gaussian process meets big data: A review of scalable gps. IEEE transactions on neural networks and learning systems 31(11):4405–4423 Martinez-Cantin [2018] Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  37. Martinez-Cantin R (2018) Funneled bayesian optimization for design, tuning and control of autonomous systems. IEEE transactions on cybernetics 49(4):1489–1500 Mathern et al [2021] Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  38. Mathern A, Steinholtz OS, Sjöberg A, et al (2021) Multi-objective constrained bayesian optimization for structural design. Structural and Multidisciplinary Optimization 63:689–701 Müller et al [2021] Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  39. Müller S, Hollmann N, Arango SP, et al (2021) Transformers can do bayesian inference. arXiv preprint arXiv:211210510 Müller et al [2023] Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  40. Müller S, Feurer M, Hollmann N, et al (2023) Pfns4bo: In-context learning for bayesian optimization. arXiv preprint arXiv:230517535 Picard and Ahmed [2024] Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  41. Picard C, Ahmed F (2024) Fast and accurate zero-training classification for tabular engineering data. arXiv preprint arXiv:240106948 Picard and Schiffmann [2021] Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  42. Picard C, Schiffmann J (2021) Realistic constrained multiobjective optimization benchmark problems from design. IEEE Transactions on Evolutionary Computation 25(2):234–246. 10.1109/TEVC.2020.3020046 Pleiss et al [2020] Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  43. Pleiss G, Jankowiak M, Eriksson D, et al (2020) Fast matrix square roots with applications to gaussian processes and bayesian optimization. Advances in neural information processing systems 33:22268–22281 Ragueneau et al [2024] Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  44. Ragueneau Q, Laurent L, Legay A, et al (2024) A constrained bayesian optimization framework for structural vibrations with local nonlinearities. Structural and Multidisciplinary Optimization 67(4):1–27 Sandgren [1990] Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  45. Sandgren E (1990) Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. Journal of Mechanical Design 112(2):223–229. 10.1115/1.2912596 Shahriari et al [2015] Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  46. Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1):148–175 Shields et al [2021] Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  47. Shields BJ, Stevens J, Li J, et al (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590(7844):89–96 Tao et al [2021] Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  48. Tao S, Van Beek A, Apley DW, et al (2021) Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143(11):111701 Thanedar and Vanderplaats [1995] Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  49. Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. Journal of Structural Engineering 121(2):301–306 Tran et al [2019] Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  50. Tran A, Tran M, Wang Y (2019) Constrained mixed-integer gaussian mixture bayesian optimization and its applications in designing fractal and auxetic metamaterials. Structural and Multidisciplinary Optimization 59:2131–2154 Tran et al [2022] Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  51. Tran A, Eldred M, Wildey T, et al (2022) aphbo-2gp-3b: a budgeted asynchronous parallel multi-acquisition functions for constrained bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization 65(4):132 Wang and Shan [2006] Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  52. Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 415–426 Yang and Hossein Gandomi [2012] Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483 Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
  53. Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations 29(5):464–483
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rosen (1 paper)
  2. Yu (19 papers)
  3. Cyril Picard (10 papers)
  4. Faez Ahmed (66 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com