Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum-informed simulations for mechanics of materials: DFTB+MBD framework (2404.04216v1)

Published 5 Apr 2024 in cs.CE, physics.comp-ph, and quant-ph

Abstract: The macroscopic behaviors of materials are determined by interactions that occur at multiple lengths and time scales. Depending on the application, describing, predicting, and understanding these behaviors require models that rely on insights from electronic and atomic scales. In such cases, classical simplified approximations at those scales are insufficient, and quantum-based modeling is required. In this paper, we study how quantum effects can modify the mechanical properties of systems relevant to materials engineering. We base our study on a high-fidelity modeling framework that combines two computationally efficient models rooted in quantum first principles: Density Functional Tight Binding (DFTB) and many-body dispersion (MBD). The MBD model is applied to accurately describe non-covalent van der Waals interactions. Through various benchmark applications, we demonstrate the capabilities of this framework and the limitations of simplified modeling. We provide an open-source repository containing all codes, datasets, and examples presented in this work. This repository serves as a practical toolkit that we hope will support the development of future research in effective large-scale and multiscale modeling with quantum-mechanical fidelity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. doi:https://doi.org/10.1016/j.actamat.2012.03.011.
  2. doi:https://doi.org/10.1016/j.jmps.2013.09.012.
  3. doi:https://doi.org/10.1016/j.triboint.2018.02.005.
  4. doi:https://doi.org/10.1038/nature07128.
  5. doi:https://doi.org/10.1038/nphys3017.
  6. doi:https://doi.org/10.1038/nature08812.
  7. doi:https://doi.org/10.1103/PhysRev.136.B864.
  8. doi:https://doi.org/10.1103/PhysRev.140.A1133.
  9. doi:https://doi.org/10.1103/RevModPhys.87.897.
  10. doi:https://doi.org/10.1146/annurev-matsci-070218-010143.
  11. G. Csányi, T. Albaret, M. C. Payne, A. De Vita, “learn on the fly”: A hybrid classical and quantum-mechanical molecular dynamics simulation, Physical Review Letters 93 (2004) 175503. doi:https://doi.org/10.1103/PhysRevLett.93.175503.
  12. doi:https://doi.org/10.1088/0965-0393/11/3/201.
  13. doi:https://doi.org/10.1088/0953-8984/14/4/312.
  14. doi:https://doi.org/10.1038/ncomms14621.
  15. doi:https://doi.org/10.1038/s41524-019-0189-9.
  16. doi:https://doi.org/10.1016/j.ijengsci.2020.103342.
  17. doi:https://doi.org/10.1088/0034-4885/60/12/001.
  18. doi:https://doi.org/10.1103/PhysRevB.51.12947.
  19. doi:https://doi.org/10.1103/PhysRevB.58.7260.
  20. doi:https://doi.org/10.1080/23746149.2019.1710252.
  21. doi:https://doi.org/10.1038/s41586-019-1013-x.
  22. doi:https://doi.org/10.1021/bi00483a001.
  23. doi:https://doi.org/10.1073/pnas.192252799.
  24. doi:https://doi.org/10.1103/PhysRevLett.102.073005.
  25. doi:https://doi.org/10.1021/jz402663k.
  26. doi:https://doi.org/10.1021/jz400226x.
  27. doi:https://doi.org/10.1002/anie.201301938.
  28. doi:https://doi.org/10.1103/PhysRevLett.108.236402.
  29. doi:https://doi.org/10.1038/s41467-020-15480-w.
  30. doi:https://doi.org/10.1126/science.aae0509.
  31. doi:https://doi.org/10.1021/acs.jpclett.7b03234.
  32. doi:https://doi.org/10.1126/sciadv.aax0024.
  33. doi:https://doi.org/10.1093/oso/9780195092769.001.0001.
  34. doi:https://doi.org/10.1103/RevModPhys.64.1045.
  35. doi:https://doi.org/10.1021/jp074167r.
  36. doi:https://doi.org/10.1002/piuz.19780090109.
  37. doi:https://doi.org/10.1063/1.4789814.
  38. doi:https://doi.org/10.1039/B600027D.
  39. doi:https://doi.org/10.1063/1.4865104.
  40. doi:https://doi.org/10.1007/BF00549096.
  41. doi:https://doi.org/10.1021/jp952841b.
  42. doi:https://doi.org/10.1103/PhysRevB.75.045407.
  43. doi:https://doi.org/10.1063/1.5143190.
  44. https://github.com/libmbd/libmbd, libmbd source code.
  45. doi:https://doi.org/10.1103/PhysRevLett.128.106101.
  46. doi:https://doi.org/10.1103/PhysRevLett.113.055701.
  47. doi:https://doi.org/10.1103/PhysRevResearch.5.L012028.
  48. doi:https://doi.org/10.1103/PhysRevB.58.14013.
  49. doi:https://doi.org/10.3390/polym13071047.
  50. doi:https://doi.org/10.1126/science.aat7439.
  51. doi:https://doi.org/10.1088/1361-648X/aaa3cc.
  52. doi:https://doi.org/10.1016/j.ijengsci.2019.103137.
  53. doi:https://doi.org/10.1007/978-3-319-01201-8_2.
  54. doi:https://doi.org/10.1021/ja00124a002.
  55. doi:https://doi.org/10.1002/jcc.20303.
  56. doi:https://doi.org/10.1021/ja00214a001.
  57. doi:https://doi.org/10.1103/PhysRevB.31.5262.
  58. doi:https://doi.org/10.1016/j.commatsci.2009.12.007.
  59. doi:https://doi.org/10.1016/B978-0-08-100406-7.00001-5.
  60. doi:https://doi.org/10.1016/B978-0-12-429851-4.X5000-1.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com