Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Newton method for solving locally definite multiparameter eigenvalue problems by multiindex (2404.04194v2)

Published 5 Apr 2024 in math.NA and cs.NA

Abstract: We present a new approach to compute eigenvalues and eigenvectors of locally definite multiparameter eigenvalue problems by its signed multiindex. The method has the interpretation of a semismooth Newton method applied to certain functions that have a unique zero. We can therefore show local quadratic convergence, and for certain extreme eigenvalues even global linear convergence of the method. Local definiteness is a weaker condition than right and left definiteness, which is often considered for multiparameter eigenvalue problems. These conditions are naturally satisfied for multiparameter Sturm-Liouville problems that arise when separation of variables can be applied to multidimensional boundary eigenvalue problems.

Summary

We haven't generated a summary for this paper yet.