Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic SQL -- Combining and optimizing semantic predicates in SQL (2404.03880v1)

Published 5 Apr 2024 in cs.DB

Abstract: In recent years, the surge in unstructured data analysis, facilitated by advancements in Machine Learning (ML), has prompted diverse approaches for handling images, text documents, and videos. Analysts, leveraging ML models, can extract meaningful information from unstructured data and store it in relational databases, allowing the execution of SQL queries for further analysis. Simultaneously, vector databases have emerged, embedding unstructured data for efficient top-k queries based on textual queries. This paper introduces a novel framework SSQL - Semantic SQL that utilizes these two approaches, enabling the incorporation of semantic queries within SQL statements. Our approach extends SQL queries with dedicated keywords for specifying semantic queries alongside predicates related to ML model results and metadata. Our experimental results show that using just semantic queries fails catastrophically to answer count and spatial queries in more than 60% of the cases. Our proposed method jointly optimizes the queries containing both semantic predicates and predicates on structured tables, such as those generated by ML models or other metadata. Further, to improve the query results, we incorporated human-in-the-loop feedback to determine the optimal similarity score threshold for returning results.

Summary

We haven't generated a summary for this paper yet.