Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

A survey of ultra-compact rotating boson star spacetimes (2404.03853v1)

Published 5 Apr 2024 in gr-qc and hep-th

Abstract: Solitonic boson stars (SBS) are compact shell-like objects with an inside having a nearly constant value of scalar field bounded by a thin shell where the scalar field rapidly changes. While the spherically symmetric SBS can be described by an analytical approximation that works well in the thin-shell case, no such approximation exists for rotating SBS and the investigation of such stars poses a numerical challenge. We numerically investigate rotating SBS in case if the relative thickness of the shell is small. We compute Gerosh-Hansen multipole moments to study the structure of SBS spacetime in the outside region and the closeness of SBS to the rotating black hole metric.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
  2. B. P. Abbott et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101, 2017.
  3. B. P. Abbott et al. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D, 100(10):104036, 2019.
  4. R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Phys. Rev. X, 11:021053, 2021.
  5. R. Abbott et al. Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophys. J. Lett., 915(1):L5, 2021.
  6. Universal relations for rotating boson stars. Phys. Rev. D, 106(12):123022, 2022.
  7. Effective no-hair relations for spinning Boson Stars. 5 2023.
  8. Dynamical evolution of boson stars. 2. Excited states and selfinteracting fields. Phys. Rev. D, 58:104004, 1998.
  9. Leor Barack et al. Black holes, gravitational waves and fundamental physics: a roadmap. Class. Quant. Grav., 36(14):143001, 2019.
  10. Emanuele Berti et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav., 32:243001, 2015.
  11. Gianfranco Bertone et al. Gravitational wave probes of dark matter: challenges and opportunities. SciPost Phys. Core, 3:007, 2020.
  12. Final fate of compact boson star mergers. Phys. Rev. D, 95(12):124005, 2017.
  13. Soliton boson stars, Q-balls and the causal Buchdahl bound. JCAP, 02(02):032, 2022.
  14. On the structure and stability of rapidly rotating fluid bodies in general relativity. I. The numerical method for computing structure and its application to uniformly rotating homogeneous bodies. Astrophys. J., 204:200–223, February 1976.
  15. Testing the black hole ‘no-hair’ hypothesis. Class. Quant. Grav., 33(17):174001, 2016.
  16. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D, 94(8):084031, 2016.
  17. Testing the nature of dark compact objects: a status report. Living Rev. Rel., 22(1):4, 2019.
  18. Ergoregion instability of ultracompact astrophysical objects. Phys. Rev. D, 77:124044, 2008.
  19. Boson Stars: Gravitational Equilibria of Selfinteracting Scalar Fields. Phys. Rev. Lett., 57:2485–2488, 1986.
  20. Scalar Soliton Stars and Black Holes. Phys. Rev. D, 35:3658, 1987.
  21. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors. Living Rev. Rel., 16:7, 2013.
  22. Robert P. Geroch. Multipole moments. II. Curved space. J. Math. Phys., 11:2580–2588, 1970.
  23. Robert P. Geroch. A Method for Generating Solutions of Einstein’s Equations. J. Math. Phys., 12(6):918–924, 1971.
  24. Hunting for Dark Particles with Gravitational Waves. JCAP, 10:001, 2016.
  25. Philippe Grandclément. Light rings and light points of boson stars. Phys. Rev. D, 95(8):084011, 2017.
  26. Models of rotating boson stars and geodesics around them: new type of orbits. Phys. Rev. D, 90(2):024068, 2014.
  27. R. O. Hansen. Multipole moments of stationary space-times. J. Math. Phys., 15:46–52, 1974.
  28. David J. Kaup. Klein-Gordon Geon. Phys. Rev., 172:1331–1342, 1968.
  29. Rotating boson stars and Q-balls. Phys. Rev. D, 72:064002, 2005.
  30. Rotating Boson Stars and Q-Balls. II. Negative Parity and Ergoregions. Phys. Rev. D, 77:064025, 2008.
  31. Stable Phases of Boson Stars. Phys. Rev. D, 85:024045, 2012.
  32. Rapidly rotating general relativistic stars. I - Numerical method and its application to uniformly rotating polytropes. Mon. Not. Roy. Astron. Soc., 237:355–379, 1989.
  33. Gravitational Wave Signatures of Highly Compact Boson Star Binaries. Phys. Rev. D, 96(10):104058, 2017.
  34. Revising the multipole moments of numerical spacetimes, and its consequences. Phys. Rev. Lett., 108:231104, 2012.
  35. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, 2014.
  36. F. D. Ryan. Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. Phys. Rev. D, 52:5707–5718, 1995.
  37. Fintan D. Ryan. Spinning boson stars with large selfinteraction. Phys. Rev. D, 55:6081–6091, 1997.
  38. Rotating boson star as an effective mass torus in general relativity. Phys. Lett. A, 249:389–394, 1998.
  39. Boson stars with generic selfinteractions. Int. J. Mod. Phys. D, 9:601–618, 2000.
  40. Stability of rotating scalar boson stars with nonlinear interactions. Phys. Rev. D, 103(4):044022, 2021.
  41. Binary boson stars: Merger dynamics and formation of rotating remnant stars. Phys. Rev. D, 107(12):124018, 2023.
  42. Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2 edition, 2003.
  43. Nikolay Sukhov. A pseudo-spectral approach to constructing rotating boson star spacetimes. 3 2023.
  44. Multipolar structure of rotating boson stars. Phys. Rev. D, 105(12):124020, 2022.
  45. Robert M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.
  46. Effective No-Hair Relations for Neutron Stars and Quark Stars: Relativistic Results. Phys. Rev. D, 89(12):124013, 2014.
  47. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays. Living Rev. Rel., 16:9, 2013.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com