Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alzheimer's disease detection in PSG signals (2404.03549v1)

Published 4 Apr 2024 in eess.SP and cs.AI

Abstract: Alzheimer's disease (AD) and sleep disorders exhibit a close association, where disruptions in sleep patterns often precede the onset of Mild Cognitive Impairment (MCI) and early-stage AD. This study delves into the potential of utilizing sleep-related electroencephalography (EEG) signals acquired through polysomnography (PSG) for the early detection of AD. Our primary focus is on exploring semi-supervised Deep Learning techniques for the classification of EEG signals due to the clinical scenario characterized by the limited data availability. The methodology entails testing and comparing the performance of semi-supervised SMATE and TapNet models, benchmarked against the supervised XCM model, and unsupervised Hidden Markov Models (HMMs). The study highlights the significance of spatial and temporal analysis capabilities, conducting independent analyses of each sleep stage. Results demonstrate the effectiveness of SMATE in leveraging limited labeled data, achieving stable metrics across all sleep stages, and reaching 90% accuracy in its supervised form. Comparative analyses reveal SMATE's superior performance over TapNet and HMM, while XCM excels in supervised scenarios with an accuracy range of 92 - 94%. These findings underscore the potential of semi-supervised models in early AD detection, particularly in overcoming the challenges associated with the scarcity of labeled data. Ablation tests affirm the critical role of spatio-temporal feature extraction in semi-supervised predictive performance, and t-SNE visualizations validate the model's proficiency in distinguishing AD patterns. Overall, this research contributes to the advancement of AD detection through innovative Deep Learning approaches, highlighting the crucial role of semi-supervised learning in addressing data limitations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. “Dementia. World Health Organization (WHO).” Mar 2023, https://www.who.int/news-room/fact-sheets/detail/dementia.
  2. A. Donoso, “La enfermedad de Alzheimer,” Revista Chilena de Neuro-psiquiatria, vol. 41, pp. 13 – 22, 11 2003.
  3. M. H. Janeiro, C. G. Ardanaz, N. Sola-Sevilla, J. Dong, M. Cortés-Erice, M. Solas, E. Puerta, and M. J. Ramírez, “Biomarcadores en la enfermedad de Alzheimer,” Advances in Laboratory Medicine / Avances en Medicina de Laboratorio, vol. 2, no. 1, p. 39–50, 2021.
  4. A. G. Andrade, O. M. Bubu, A. W. Varga, and R. S. Osorio, “The relationship between obstructive sleep apnea and Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 64, no. s1, pp. S255–S270, 2018.
  5. A. M. Gaeta, I. D. Benítez, C. Jorge, G. Torres, F. Dakterzada, O. Minguez, R. Huerto, M. Pujol, A. Carnes, M. Dalmases et al., “Prevalence of obstructive sleep apnea in alzheimer’s disease patients,” Journal of neurology, vol. 267, pp. 1012–1022, 2020.
  6. H. Azami, S. Moguilner, H. Penagos, R. A. Sarkis, S. E. Arnold, S. N. Gomperts, and A. D. Lam, “Eeg entropy in rem sleep as a physiologic biomarker in early clinical stages of alzheimer’s disease,” Journal of Alzheimer’s Disease, no. Preprint, pp. 1–16, 2023.
  7. S. Afshari and M. Jalili, “Directed functional networks in alzheimer’s disease: Disruption of global and local connectivity measures,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 4, pp. 949–955, 2017.
  8. K. A. I. Aboalayon, H. T. Ocbagabir, and M. Faezipour, “Efficient sleep stage classification based on EEG signals,” in IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, 2014, pp. 1–6.
  9. M. Tanveer, A. H. Rashid, M. A. Ganaie, M. Reza, I. Razzak, and K.-L. Hua, “Classification of Alzheimer’s Disease using ensemble of Deep Neural Networks trained through Transfer Learning,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 4, pp. 1453–1463, 2022.
  10. D. Klepl, F. He, M. Wu, D. J. Blackburn, and P. Sarrigiannis, “Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of Alzheimer’s Disease Using EEG Data,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 3978–3987, 2023.
  11. A.-M. Tăuţan, B. Ionescu, and E. Santarnecchi, “Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques,” Artificial Intelligence in Medicine, vol. 117, p. 102081, 2021.
  12. A. D’Atri, S. Scarpelli, M. Gorgoni, I. Truglia, G. Lauri, S. Cordone, M. Ferrara, C. Marra, P. M. Rossini, and L. De Gennaro, “EEG alterations during wake and sleep in mild cognitive impairment and alzheimer’s disease,” iScience, vol. 24, no. 4, p. 102386, 2021.
  13. D. Geng, C. Wang, Z. Fu, Y. Zhang, K. Yang, and H. An, “Sleep EEG-based approach to detect Mild Cognitive Impairment,” Frontiers in Aging Neuroscience, vol. 14, 2022.
  14. H. Azami, S. Moguilner, H. Penagos, R. A. Sarkis, S. E. Arnold, S. N. Gomperts, and A. D. Lam, “EEG entropy in REM sleep as a physiologic biomarker in early clinical stages of Alzheimer’s Disease,” Journal of Alzheimer’s Disease, vol. 91, no. 4, p. 1557–1572, 2023.
  15. B. Duce, C. Rego, J. Milosavljevic, and C. Hukins, “The AASM recommended and acceptable EEG montages are comparable for the staging of sleep and scoring of EEG Arousals,” Journal of Clinical Sleep Medicine, vol. 10, no. 07, p. 803–809, 2014.
  16. R. Wang, J. Wang, H. Yu, X. Wei, C. Yang, and B. Deng, “Power spectral density and coherence analysis of alzheimer’s EEG,” Cognitive Neurodynamics, vol. 9, no. 3, p. 291–304, 2014.
  17. S. Khalighi, T. Sousa, J. M. Santos, and U. Nunes, “ISRUC-sleep: A comprehensive public dataset for sleep researchers,” Computer Methods and Programs in Biomedicine, vol. 124, p. 180–192, 2016.
  18. A. Guillot, F. Sauvet, E. During, and V. Thorey, “Dreem Open Datasets: Multi-Scored Sleep Datasets to Compare Human and Automated Sleep Staging,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. PP, pp. 1–1, 2020.
  19. M. Rezaei, H. Mohammadi, and H. Khazaie, “EEG/EOG/EMG data from a cross sectional study on psychophysiological insomnia and normal sleep subjects,” Data in Brief, vol. 15, p. 314–319, 2017.
  20. J. R. Terry, C. Anderson, and J. Horne, “Nonlinear analysis of EEG during NREM sleep reveals changes in functional connectivity due to natural aging,” Human Brain Mapping, vol. 23, no. 2, pp. 73–84, Jun. 2004.
  21. H. Huang, J. Zhang, L. Zhu, J. Tang, G. Lin, W. Kong, X. Lei, and L. Zhu, “EEG-based sleep staging analysis with functional connectivity,” Sensors, vol. 21, no. 6, p. 1988, 2021.
  22. A. Coatanhay, L. Soufflet, L. Staner, and P. Boeijinga, “EEG source identification: Frequency analysis during sleep,” Comptes Rendus Biologies, vol. 325, no. 4, p. 273–282, 2002.
  23. J. Zuo, K. Zeitouni, and Y. Taher, “Smate: Semi-supervised spatio-temporal representation learning on multivariate time series,” in 2021 IEEE International Conference on Data Mining (ICDM).   IEEE, 2021, pp. 1565–1570.
  24. X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “TapNet: Multivariate time series classification with attentional prototypical network,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, p. 6845–6852, 2020.
  25. K. Fauvel, T. Lin, V. Masson, E. Fromont, and A. Termier, “XCM: An explainable convolutional neural network for Multivariate time series classification,” Mathematics, vol. 9, no. 23, p. 3137, 2021.
  26. F. Moreno-Pino, E. Sükei, P. M. Olmos, and A. Artés-Rodríguez, “PyHHMM: A Python Library for Heterogeneous Hidden Markov Models,” 2022.
  27. H.-Y. Kim, “Analysis of variance (ANOVA) comparing means of more than two groups,” Restorative dentistry & endodontics, vol. 39, no. 1, pp. 74–77, 2014.
  28. A. A. Awan, “Introduction to T-SNE: Nonlinear dimensionality reduction and Data Visualization,” Mar 2023, https://www.datacamp.com/tutorial/introduction-t-sne.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com