Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SCIM MILQ: An HPC Quantum Scheduler (2404.03512v2)

Published 4 Apr 2024 in quant-ph

Abstract: With the increasing sophistication and capability of quantum hardware, its integration, and employment in high performance computing (HPC) infrastructure becomes relevant. This opens largely unexplored access models and scheduling questions in such quantum-classical computing environments, going beyond the current cloud access model. SCIM MILQ is a scheduler for quantum tasks in HPC infrastructure. It combines well-established scheduling techniques with methods unique to quantum computing, such as circuit cutting. SCIM MILQ can schedule tasks while minimizing the makespan, i.e., the time that elapses from the start of work to the end, improving on average by 25%. Additionally, it reduces the noise in the circuit by up to 10%, increasing the outcome's reliability. We compare it against an existing baseline and show its viability in an HPC environment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
  2. D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin, “Logical quantum processor based on reconfigurable atom arrays,” Nature, vol. 626, no. 7997, pp. 58–65, Feb 2024. [Online]. Available: https://doi.org/10.1038/s41586-023-06927-3
  3. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science.   Santa Fe, NM, USA: IEEE, 1994, pp. 124–134. [Online]. Available: https://doi.org/10.1109/SFCS.1994.365700
  4. J. Gambetta. (2022) Expanding the ibm quantum roadmap to anticipate the future of quantum-centric supercomputing. [Online]. Available: https://research.ibm.com/blog/ibm-quantum-roadmap-2025
  5. P. Seitz, M. Geiger, and C. B. Mendl, “Multithreaded parallelism for heterogeneous clusters of qpus,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2311.17490
  6. T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch, and T. Monz, “Quantum computers for high-performance computing,” IEEE Micro, vol. 41, no. 5, p. 15–23, sep 2021. [Online]. Available: https://doi.org/10.1109/MM.2021.3099140
  7. M. Schulz, L. Schulz, M. Ruefenacht, and R. Wille, “Towards the munich quantum software stack: Enabling efficient access and tool support for quantum computers,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 02, 2023, pp. 399–400. [Online]. Available: https://doi.org/10.1109/QCE57702.2023.10301
  8. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023. [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.2573505
  9. S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t|ket⟩ : A Retargetable Compiler for NISQ Devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020. [Online]. Available: http://arxiv.org/abs/2003.10611
  10. E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE, “Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online]. Available: https://www.osti.gov/biblio/1785933
  11. A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and T. S. Humble, “XACC: a system-level software infrastructure for heterogeneous quantum-classical computing,” Quantum Science and Technology, vol. 5, p. 024002, 2020. [Online]. Available: https://doi.org/10.1088/2058-9565/ab6bf6
  12. T. C. Q. development team, “Cuda quantum,” jan 2024. [Online]. Available: https://doi.org/10.5281/zenodo.10591614
  13. A. Furutanpey, J. Barzen, M. Bechtold, S. Dustdar, F. Leymann, P. Raith, and F. Truger, “Architectural vision for quantum computing in the edge-cloud continuum,” in 2023 IEEE International Conference on Quantum Software (QSW), 2023, pp. 88–103. [Online]. Available: https://doi.org/10.1109/QSW59989.2023.00021
  14. S. Basu, A. Saha, A. Chakrabarti, and S. Sur-Kolay, “i-qer: An intelligent approach towards quantum error reduction,” ACM Transactions on Quantum Computing, vol. 3, no. 4, jul 2022. [Online]. Available: https://doi.org/10.1145/3539613
  15. D. Bhoumik, R. Majumdar, A. Saha, and S. Sur-Kolay, “Distributed scheduling of quantum circuits with noise and time optimization,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2309.06005
  16. T. Chatterjee, A. Das, S. I. Mohtashim, A. Saha, and A. Chakrabarti, “Qurzon: A prototype for a divide and conquer-based quantum compiler for distributed quantum systems,” SN Computer Science, vol. 3, no. 4, p. 323, Jun 2022. [Online]. Available: https://doi.org/10.1007/s42979-022-01207-9
  17. J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms for scheduling unrelated parallel machines,” Mathematical Programming, vol. 46, no. 1, pp. 259–271, Jan 1990. [Online]. Available: https://doi.org/10.1007/BF01585745
  18. L. Rosenbauer., A. Stein., H. Stegherr., and J. Hähner., “Metaheuristics for the minimum set cover problem: A comparison,” in Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020) - ECTA, INSTICC.   SciTePress, 2020, pp. 123–130. [Online]. Available: https://doi.org/10.5220/0010019901230130
  19. A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for resource management,” in Job Scheduling Strategies for Parallel Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60. [Online]. Available: https://doi.org/10.1007/10968987_3
  20. H. F. Hofmann, “How to simulate a universal quantum computer using negative probabilities,” J. Phys. A: Math. Theor., vol. 42, p. 275304, 2009. [Online]. Available: https://dx.doi.org/10.1088/1751-811/42/27/275304
  21. K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling single-qubit operations,” New J. Phys., vol. 23, p. 023021, 2021. [Online]. Available: https://doi.org/10.1088/1367-2630/abd7bc
  22. ——, “Overhead for simulating a non-local channel with local channels by quasiprobability sampling,” Quantum, vol. 5, p. 388, 2021. [Online]. Available: https://quantum-journal.org/papers/q-2021-01-28-388/
  23. C. Piveteau and D. Sutter, “Circuit knitting with classical communication,” IEEE Trans. Inf. Theory, p. 1, 2023. [Online]. Available: https://doi.org/10.1109/TIT.2023.3310797
  24. C. Ufrecht, M. Periyasamy, S. Rietsch, D. D. Scherer, A. Plinge, and C. Mutschler, “Cutting multi-control quantum gates with ZX calculus,” Quantum, vol. 7, p. 1147, 2023. [Online]. Available: https://doi.org/10.22331/q-2023-10-23-1147
  25. C. Ufrecht, L. S. Herzog, D. D. Scherer, M. Periyasamy, S. Rietsch, A. Plinge, and C. Mutschler, “Optimal joint cutting of two-qubit rotation gates,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2312.09679
  26. L. Schmitt, C. Piveteau, and D. Sutter, “Cutting circuits with multiple two-qubit unitaries,” 2024, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2312.11638
  27. A. W. Harrow and A. Lowe, “Optimal quantum circuit cuts with application to clustered hamiltonian simulation,” 2024, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2403.01018
  28. T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” Phys. Rev. Lett., vol. 125, p. 150504, 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
  29. A. Lowe, M. Medvidović, A. Hayes, L. J. O’Riordan, T. R. Bromley, J. M. Arrazola, and N. Killoran, “Fast quantum circuit cutting with randomized measurements,” Quantum, vol. 7, p. 934, 2023. [Online]. Available: https://quantum-journal.org/papers/q-2023-03-02-934/
  30. G. Uchehara, T. M. Aamodt, and O. D. Matteo, “Rotation-inspired circuit cut optimization,” in 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS).   Los Alamitos, CA, USA: IEEE Computer Society, 2022, p. 50. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/QCS56647.2022.00011
  31. P. Pednault, “An alternative approach to optimal wire cutting without ancilla qubits,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2303.08287
  32. H. Harada, K. Wada, and N. Yamamoto, “Optimal parallel wire cutting without ancilla qubits,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2303.07340
  33. L. Brenner, C. Piveteau, and D. Sutter, “Optimal wire cutting with classical communication,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2302.03366
  34. H. Pashayan, J. J. Wallman, and S. D. Bartlett, “Estimating outcome probabilities of quantum circuits using quasiprobabilities,” Phys. Rev. Lett., vol. 115, p. 070501, 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
  35. N. Quetschlich, L. Burgholzer, and R. Wille, “Mqt predictor: Automatic device selection with device-specific circuit compilation for quantum computing,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2310.06889
  36. W. van Dam, M. Mykhailova, and M. Soeken, “Using azure quantum resource estimator for assessing performance of fault tolerant quantum computation,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2311.05801
  37. P. D. Nation and M. Treinish, “Suppressing quantum circuit errors due to system variability,” PRX Quantum, vol. 4, p. 010327, Mar 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.4.010327
  38. B. Nash, V. Gheorghiu, and M. Mosca, “Quantum circuit optimizations for nisq architectures,” Quantum Sci. Technol., vol. 5, p. 025010, 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab79b1
  39. M. Kalra, S. Tyagi, V. Kumar, M. Kaur, W. K. Mashwani, H. Shah, and K. Shah, “A comprehensive review on scatter search: Techniques, applications, and challenges,” Mathematical Problems in Engineering, vol. 2021, p. 5588486, May 2021. [Online]. Available: https://doi.org/10.1155/2021/5588486
  40. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.1707.06347
  41. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html
  42. N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmarking Software and Design Automation Tools for Quantum Computing,” Quantum, vol. 7, p. 1062, Jul. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-07-20-1062
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com