SCIM MILQ: An HPC Quantum Scheduler (2404.03512v2)
Abstract: With the increasing sophistication and capability of quantum hardware, its integration, and employment in high performance computing (HPC) infrastructure becomes relevant. This opens largely unexplored access models and scheduling questions in such quantum-classical computing environments, going beyond the current cloud access model. SCIM MILQ is a scheduler for quantum tasks in HPC infrastructure. It combines well-established scheduling techniques with methods unique to quantum computing, such as circuit cutting. SCIM MILQ can schedule tasks while minimizing the makespan, i.e., the time that elapses from the start of work to the end, improving on average by 25%. Additionally, it reduces the noise in the circuit by up to 10%, increasing the outcome's reliability. We compare it against an existing baseline and show its viability in an HPC environment.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
- D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin, “Logical quantum processor based on reconfigurable atom arrays,” Nature, vol. 626, no. 7997, pp. 58–65, Feb 2024. [Online]. Available: https://doi.org/10.1038/s41586-023-06927-3
- P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science. Santa Fe, NM, USA: IEEE, 1994, pp. 124–134. [Online]. Available: https://doi.org/10.1109/SFCS.1994.365700
- J. Gambetta. (2022) Expanding the ibm quantum roadmap to anticipate the future of quantum-centric supercomputing. [Online]. Available: https://research.ibm.com/blog/ibm-quantum-roadmap-2025
- P. Seitz, M. Geiger, and C. B. Mendl, “Multithreaded parallelism for heterogeneous clusters of qpus,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2311.17490
- T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch, and T. Monz, “Quantum computers for high-performance computing,” IEEE Micro, vol. 41, no. 5, p. 15–23, sep 2021. [Online]. Available: https://doi.org/10.1109/MM.2021.3099140
- M. Schulz, L. Schulz, M. Ruefenacht, and R. Wille, “Towards the munich quantum software stack: Enabling efficient access and tool support for quantum computers,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 02, 2023, pp. 399–400. [Online]. Available: https://doi.org/10.1109/QCE57702.2023.10301
- Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023. [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.2573505
- S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t|ket⟩ : A Retargetable Compiler for NISQ Devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020. [Online]. Available: http://arxiv.org/abs/2003.10611
- E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE, “Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online]. Available: https://www.osti.gov/biblio/1785933
- A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and T. S. Humble, “XACC: a system-level software infrastructure for heterogeneous quantum-classical computing,” Quantum Science and Technology, vol. 5, p. 024002, 2020. [Online]. Available: https://doi.org/10.1088/2058-9565/ab6bf6
- T. C. Q. development team, “Cuda quantum,” jan 2024. [Online]. Available: https://doi.org/10.5281/zenodo.10591614
- A. Furutanpey, J. Barzen, M. Bechtold, S. Dustdar, F. Leymann, P. Raith, and F. Truger, “Architectural vision for quantum computing in the edge-cloud continuum,” in 2023 IEEE International Conference on Quantum Software (QSW), 2023, pp. 88–103. [Online]. Available: https://doi.org/10.1109/QSW59989.2023.00021
- S. Basu, A. Saha, A. Chakrabarti, and S. Sur-Kolay, “i-qer: An intelligent approach towards quantum error reduction,” ACM Transactions on Quantum Computing, vol. 3, no. 4, jul 2022. [Online]. Available: https://doi.org/10.1145/3539613
- D. Bhoumik, R. Majumdar, A. Saha, and S. Sur-Kolay, “Distributed scheduling of quantum circuits with noise and time optimization,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2309.06005
- T. Chatterjee, A. Das, S. I. Mohtashim, A. Saha, and A. Chakrabarti, “Qurzon: A prototype for a divide and conquer-based quantum compiler for distributed quantum systems,” SN Computer Science, vol. 3, no. 4, p. 323, Jun 2022. [Online]. Available: https://doi.org/10.1007/s42979-022-01207-9
- J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms for scheduling unrelated parallel machines,” Mathematical Programming, vol. 46, no. 1, pp. 259–271, Jan 1990. [Online]. Available: https://doi.org/10.1007/BF01585745
- L. Rosenbauer., A. Stein., H. Stegherr., and J. Hähner., “Metaheuristics for the minimum set cover problem: A comparison,” in Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020) - ECTA, INSTICC. SciTePress, 2020, pp. 123–130. [Online]. Available: https://doi.org/10.5220/0010019901230130
- A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for resource management,” in Job Scheduling Strategies for Parallel Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60. [Online]. Available: https://doi.org/10.1007/10968987_3
- H. F. Hofmann, “How to simulate a universal quantum computer using negative probabilities,” J. Phys. A: Math. Theor., vol. 42, p. 275304, 2009. [Online]. Available: https://dx.doi.org/10.1088/1751-811/42/27/275304
- K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling single-qubit operations,” New J. Phys., vol. 23, p. 023021, 2021. [Online]. Available: https://doi.org/10.1088/1367-2630/abd7bc
- ——, “Overhead for simulating a non-local channel with local channels by quasiprobability sampling,” Quantum, vol. 5, p. 388, 2021. [Online]. Available: https://quantum-journal.org/papers/q-2021-01-28-388/
- C. Piveteau and D. Sutter, “Circuit knitting with classical communication,” IEEE Trans. Inf. Theory, p. 1, 2023. [Online]. Available: https://doi.org/10.1109/TIT.2023.3310797
- C. Ufrecht, M. Periyasamy, S. Rietsch, D. D. Scherer, A. Plinge, and C. Mutschler, “Cutting multi-control quantum gates with ZX calculus,” Quantum, vol. 7, p. 1147, 2023. [Online]. Available: https://doi.org/10.22331/q-2023-10-23-1147
- C. Ufrecht, L. S. Herzog, D. D. Scherer, M. Periyasamy, S. Rietsch, A. Plinge, and C. Mutschler, “Optimal joint cutting of two-qubit rotation gates,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2312.09679
- L. Schmitt, C. Piveteau, and D. Sutter, “Cutting circuits with multiple two-qubit unitaries,” 2024, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2312.11638
- A. W. Harrow and A. Lowe, “Optimal quantum circuit cuts with application to clustered hamiltonian simulation,” 2024, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2403.01018
- T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” Phys. Rev. Lett., vol. 125, p. 150504, 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
- A. Lowe, M. Medvidović, A. Hayes, L. J. O’Riordan, T. R. Bromley, J. M. Arrazola, and N. Killoran, “Fast quantum circuit cutting with randomized measurements,” Quantum, vol. 7, p. 934, 2023. [Online]. Available: https://quantum-journal.org/papers/q-2023-03-02-934/
- G. Uchehara, T. M. Aamodt, and O. D. Matteo, “Rotation-inspired circuit cut optimization,” in 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS). Los Alamitos, CA, USA: IEEE Computer Society, 2022, p. 50. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/QCS56647.2022.00011
- P. Pednault, “An alternative approach to optimal wire cutting without ancilla qubits,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2303.08287
- H. Harada, K. Wada, and N. Yamamoto, “Optimal parallel wire cutting without ancilla qubits,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2303.07340
- L. Brenner, C. Piveteau, and D. Sutter, “Optimal wire cutting with classical communication,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2302.03366
- H. Pashayan, J. J. Wallman, and S. D. Bartlett, “Estimating outcome probabilities of quantum circuits using quasiprobabilities,” Phys. Rev. Lett., vol. 115, p. 070501, 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
- N. Quetschlich, L. Burgholzer, and R. Wille, “Mqt predictor: Automatic device selection with device-specific circuit compilation for quantum computing,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2310.06889
- W. van Dam, M. Mykhailova, and M. Soeken, “Using azure quantum resource estimator for assessing performance of fault tolerant quantum computation,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2311.05801
- P. D. Nation and M. Treinish, “Suppressing quantum circuit errors due to system variability,” PRX Quantum, vol. 4, p. 010327, Mar 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.4.010327
- B. Nash, V. Gheorghiu, and M. Mosca, “Quantum circuit optimizations for nisq architectures,” Quantum Sci. Technol., vol. 5, p. 025010, 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab79b1
- M. Kalra, S. Tyagi, V. Kumar, M. Kaur, W. K. Mashwani, H. Shah, and K. Shah, “A comprehensive review on scatter search: Techniques, applications, and challenges,” Mathematical Problems in Engineering, vol. 2021, p. 5588486, May 2021. [Online]. Available: https://doi.org/10.1155/2021/5588486
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.1707.06347
- A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html
- N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmarking Software and Design Automation Tools for Quantum Computing,” Quantum, vol. 7, p. 1062, Jul. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-07-20-1062