Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning (2404.03233v1)

Published 4 Apr 2024 in cs.CR

Abstract: Machine unlearning has become a promising solution for fulfilling the "right to be forgotten", under which individuals can request the deletion of their data from machine learning models. However, existing studies of machine unlearning mainly focus on the efficacy and efficiency of unlearning methods, while neglecting the investigation of the privacy vulnerability during the unlearning process. With two versions of a model available to an adversary, that is, the original model and the unlearned model, machine unlearning opens up a new attack surface. In this paper, we conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of the unlearned data. Specifically, under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample by only accessing the original and unlearned model. The effectiveness of the proposed unlearning inversion attacks is evaluated through extensive experiments on benchmark datasets across various model architectures and on both exact and approximate representative unlearning approaches. The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data. As such, we identify three possible defenses that help to mitigate the proposed attacks, while at the cost of reducing the utility of the unlearned model. The study in this paper uncovers an underexplored gap between machine unlearning and the privacy of unlearned data, highlighting the need for the careful design of mechanisms for implementing unlearning without leaking the information of the unlearned data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. E. De Cristofaro, “A critical overview of privacy in machine learning,” IEEE Security & Privacy, vol. 19, no. 4, pp. 19–27, 2021.
  2. J. Rosen, “The right to be forgotten,” Stan. L. Rev. Online, vol. 64, p. 88, 2011.
  3. S. L. Pardau, “The california consumer privacy act: Towards a european-style privacy regime in the united states,” J. Tech. L. & Pol’y, vol. 23, p. 68, 2018.
  4. Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in 2015 IEEE Symposium on Security and Privacy (S&P).   IEEE, 2015, pp. 463–480.
  5. A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot, “Unrolling sgd: Understanding factors influencing machine unlearning,” in 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P).   IEEE, 2022, pp. 303–319.
  6. L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,” in 2021 IEEE Symposium on Security and Privacy (S&P).   IEEE, 2021, pp. 141–159.
  7. Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining of machine learning models,” in International Conference on Machine Learning.   PMLR, 2020, pp. 10 355–10 366.
  8. C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified data removal from machine learning models,” in Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 3832–3842.
  9. M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang, “Graph unlearning,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022, pp. 499–513.
  10. V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites, “Adaptive machine unlearning,” Advances in Neural Information Processing Systems, vol. 34, pp. 16 319–16 330, 2021.
  11. J. Brophy and D. Lowd, “Machine unlearning for random forests,” in International Conference on Machine Learning.   PMLR, 2021, pp. 1092–1104.
  12. A. Thudi, H. Jia, I. Shumailov, and N. Papernot, “On the necessity of auditable algorithmic definitions for machine unlearning,” in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 4007–4022.
  13. N. G. Marchant, B. I. Rubinstein, and S. Alfeld, “Hard to forget: Poisoning attacks on certified machine unlearning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7691–7700.
  14. H. Hu, S. Wang, J. Chang, H. Zhong, R. Sun, S. Hao, H. Zhu, and M. Xue, “A duty to forget, a right to be assured? exposing vulnerabilities in machine unlearning services,” in 31th Annual Network and Distributed System Security Symposium, NDSS 2024.   The Internet Society, 2024.
  15. M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang, “When machine unlearning jeopardizes privacy,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 896–911.
  16. S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete: Gradient-based methods for machine unlearning,” in Algorithmic Learning Theory.   PMLR, 2021, pp. 931–962.
  17. N. Carlini, M. Jagielski, C. Zhang, N. Papernot, A. Terzis, and F. Tramer, “The privacy onion effect: Memorization is relative,” Advances in Neural Information Processing Systems, vol. 35, pp. 13 263–13 276, 2022.
  18. R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models,” in 2017 IEEE Symposium on Security and Privacy (S&P).   IEEE, 2017, pp. 3–18.
  19. C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.
  20. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  21. M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, pp. 1322–1333.
  22. L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  23. B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from gradients,” arXiv preprint arXiv:2001.02610, 2020.
  24. J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it to break privacy in federated learning?” Advances in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947, 2020.
  25. J. Z. Di, J. Douglas, J. Acharya, G. Kamath, and A. Sekhari, “Hidden poison: Machine unlearning enables camouflaged poisoning attacks,” in NeurIPS ML Safety Workshop, 2022.
  26. M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing,” in 23rd USENIX Security Symposium (USENIX Security 14), 2014, pp. 17–32.
  27. N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and testing unintended memorization in neural networks,” in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp. 267–284.
  28. J. Gao, S. Garg, M. Mahmoody, and P. N. Vasudevan, “Deletion inference, reconstruction, and compliance in machine (un) learning,” arXiv preprint arXiv:2202.03460, 2022.
  29. S. V. Dibbo, “Sok: Model inversion attack landscape: Taxonomy, challenges, and future roadmap,” in 2023 IEEE 36th Computer Security Foundations Symposium (CSF).   IEEE, 2023, pp. 439–456.
  30. A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang, “Updates-leak: Data set inference and reconstruction attacks in online learning,” in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 1291–1308.
  31. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics.   PMLR, 2017, pp. 1273–1282.
  32. J. Zhu and M. B. Blaschko, “R-gap: Recursive gradient attack on privacy,” in International Conference on Learning Representations, 2020.
  33. H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through gradients: Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 337–16 346.
  34. K. Yue, R. Jin, C.-W. Wong, D. Baron, and H. Dai, “Gradient obfuscation gives a false sense of security in federated learning,” in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp. 6381–6398.
  35. Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring class representatives: User-level privacy leakage from federated learning,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications.   IEEE, 2019, pp. 2512–2520.
  36. A. Wainakh, T. Müßig, T. Grube, and M. Mühlhäuser, “Label leakage from gradients in distributed machine learning,” in 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC).   IEEE, 2021, pp. 1–4.
  37. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE Symposium on Security and Privacy (S&P).   IEEE, 2017, pp. 39–57.
  38. N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations of deep learning in adversarial settings,” in 2016 IEEE European Symposium on Security and Privacy (EuroS&P).   IEEE, 2016, pp. 372–387.
  39. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, 2017, pp. 506–519.
  40. P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017, pp. 15–26.
  41. J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack: A query-efficient decision-based attack,” in 2020 IEEE Symposium on Security and Privacy (S&P).   IEEE, 2020, pp. 1277–1294.
  42. H. Li, X. Xu, X. Zhang, S. Yang, and B. Li, “Qeba: Query-efficient boundary-based blackbox attack,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1221–1230.
  43. A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Department of Computer Science, University of Toronto, 2009.
  44. A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature learning,” in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 215–223.
  45. J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the kinetics dataset,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.
  46. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.
  47. K. He, R. Girshick, and P. Dollár, “Rethinking imagenet pre-training,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4918–4927.
  48. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 308–318.
  49. M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of pruning for model compression,” arXiv preprint arXiv:1710.01878, 2017.
  50. F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine learning models via prediction apis,” in 25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 601–618.
  51. Z. Li and Y. Zhang, “Membership leakage in label-only exposures,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 880–895.
  52. C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only membership inference attacks,” in International Conference on Machine Learning.   PMLR, 2021, pp. 1964–1974.
  53. L. Song and P. Mittal, “Systematic evaluation of privacy risks of machine learning models,” in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 2615–2632.
  54. Y. Long, L. Wang, D. Bu, V. Bindschaedler, X. Wang, H. Tang, C. A. Gunter, and K. Chen, “A pragmatic approach to membership inferences on machine learning models,” in 2020 IEEE European Symposium on Security and Privacy (EuroS&P).   IEEE, 2020, pp. 521–534.
  55. D. Zhong, H. Sun, J. Xu, N. Gong, and W. H. Wang, “Understanding disparate effects of membership inference attacks and their countermeasures,” in Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, 2022, pp. 959–974.
  56. N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles,” in 2022 IEEE Symposium on Security and Privacy (S&P).   IEEE, 2022, pp. 1897–1914.
  57. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
  58. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  59. R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of quasi-newton matrices and their use in limited memory methods,” Mathematical Programming, vol. 63, no. 1-3, pp. 129–156, 1994.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hongsheng Hu (27 papers)
  2. Shuo Wang (382 papers)
  3. Tian Dong (19 papers)
  4. Minhui Xue (72 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.