Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HDR Imaging for Dynamic Scenes with Events (2404.03210v1)

Published 4 Apr 2024 in cs.CV and eess.IV

Abstract: High dynamic range imaging (HDRI) for real-world dynamic scenes is challenging because moving objects may lead to hybrid degradation of low dynamic range and motion blur. Existing event-based approaches only focus on a separate task, while cascading HDRI and motion deblurring would lead to sub-optimal solutions, and unavailable ground-truth sharp HDR images aggravate the predicament. To address these challenges, we propose an Event-based HDRI framework within a Self-supervised learning paradigm, i.e., Self-EHDRI, which generalizes HDRI performance in real-world dynamic scenarios. Specifically, a self-supervised learning strategy is carried out by learning cross-domain conversions from blurry LDR images to sharp LDR images, which enables sharp HDR images to be accessible in the intermediate process even though ground-truth sharp HDR images are missing. Then, we formulate the event-based HDRI and motion deblurring model and conduct a unified network to recover the intermediate sharp HDR results, where both the high dynamic range and high temporal resolution of events are leveraged simultaneously for compensation. We construct large-scale synthetic and real-world datasets to evaluate the effectiveness of our method. Comprehensive experiments demonstrate that the proposed Self-EHDRI outperforms state-of-the-art approaches by a large margin. The codes, datasets, and results are available at https://lxp-whu.github.io/Self-EHDRI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. L. Wang and K.-J. Yoon, “Deep learning for hdr imaging: State-of-the-art and future trends,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 8874–8895, 2021.
  2. P.-Y. Lu, T.-H. Huang, M.-S. Wu, Y.-T. Cheng, and Y.-Y. Chuang, “High dynamic range image reconstruction from hand-held cameras,” in IEEE Conf. Comput. Vis. Pattern Recog.   IEEE, 2009, pp. 509–516.
  3. Y. Chen, G. Jiang, M. Yu, Y. Yang, and Y.-S. Ho, “Learning stereo high dynamic range imaging from a pair of cameras with different exposure parameters,” IEEE Trans. on Computational Imaging, vol. 6, pp. 1044–1058, 2020.
  4. X. Chen, Y. Liu, Z. Zhang, Y. Qiao, and C. Dong, “Hdrunet: Single image hdr reconstruction with denoising and dequantization,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 354–363.
  5. H. Wang, M. Ye, X. Zhu, S. Li, C. Zhu, and X. Li, “Kunet: Imaging knowledge-inspired single hdr image reconstruction,” in IJCAI, 2022.
  6. N. K. Kalantari, R. Ramamoorthi et al., “Deep high dynamic range imaging of dynamic scenes.” ACM Transactions on Graphics., vol. 36, no. 4, pp. 144–1, 2017.
  7. H. Xu, J. Ma, Z. Le, J. Jiang, and X. Guo, “Fusiondn: A unified densely connected network for image fusion,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 07, 2020, pp. 12 484–12 491.
  8. H. Xu, J. Ma, and X.-P. Zhang, “Mef-gan: Multi-exposure image fusion via generative adversarial networks,” IEEE Trans. Image Process., vol. 29, pp. 7203–7216, 2020.
  9. Y. Yang, J. Han, J. Liang, I. Sato, and B. Shi, “Learning event guided high dynamic range video reconstruction,” in IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 13 924–13 934.
  10. J. Han, C. Zhou, P. Duan, Y. Tang, C. Xu, C. Xu, T. Huang, and B. Shi, “Neuromorphic camera guided high dynamic range imaging,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 1730–1739.
  11. N. Messikommer, S. Georgoulis, D. Gehrig, S. Tulyakov, J. Erbach, A. Bochicchio, Y. Li, and D. Scaramuzza, “Multi-bracket high dynamic range imaging with event cameras,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 547–557.
  12. K. Purohit and A. Rajagopalan, “Region-adaptive dense network for efficient motion deblurring,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 07, 2020, pp. 11 882–11 889.
  13. K. Purohit, A. Shah, and A. Rajagopalan, “Bringing alive blurred moments,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 6830–6839.
  14. C. Haoyu, T. Minggui, S. Boxin, W. YIzhou, and H. Tiejun, “Learning to deblur and generate high frame rate video with an event camera,” arXiv preprint arXiv:2003.00847, 2020.
  15. F. Xu, L. Yu, B. Wang, W. Yang, G.-S. Xia, X. Jia, Z. Qiao, and J. Liu, “Motion deblurring with real events,” in Int. Conf. Comput. Vis., 2021, pp. 2583–2592.
  16. C. Song, Q. Huang, and C. Bajaj, “E-cir: Event-enhanced continuous intensity recovery,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 7803–7812.
  17. G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-based vision: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 154–180, 2020.
  18. X. Zhang, W. Liao, L. Yu, W. Yang, and G.-S. Xia, “Event-based synthetic aperture imaging with a hybrid network,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 14 235–14 244.
  19. G. Chen, C. Chen, S. Guo, Z. Liang, K.-Y. K. Wong, and L. Zhang, “Hdr video reconstruction: A coarse-to-fine network and a real-world benchmark dataset,” in Int. Conf. Comput. Vis., 2021, pp. 2502–2511.
  20. N. Robidoux, L. E. G. Capel, D.-e. Seo, A. Sharma, F. Ariza, and F. Heide, “End-to-end high dynamic range camera pipeline optimization,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 6297–6307.
  21. E. Onzon, F. Mannan, and F. Heide, “Neural auto-exposure for high-dynamic range object detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 7710–7720.
  22. G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, “Hdr image reconstruction from a single exposure using deep cnns,” ACM Transactions on Graphics., vol. 36, no. 6, pp. 1–15, 2017.
  23. D. Marnerides, T. Bashford-Rogers, J. Hatchett, and K. Debattista, “Expandnet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content,” in Computer Graphics Forum, vol. 37, no. 2.   Wiley Online Library, 2018, pp. 37–49.
  24. P. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs: Proceedings of the 24th annual conference on computer graphics and interactive techniques,” Los Angeles, USA: SIGGRAPH, 1997.
  25. M. Nazarczuk, S. Catley-Chandar, A. Leonardis, and E. Pérez-Pellitero, “Self-supervised hdr imaging from motion and exposure cues,” arXiv preprint arXiv:2203.12311, 2022.
  26. J. Han, Y. Yang, P. Duan, C. Zhou, L. Ma, C. Xu, T. Huang, I. Sato, and B. Shi, “Hybrid high dynamic range imaging fusing neuromorphic and conventional images,” IEEE Trans. Pattern Anal. Mach. Intell., 2023.
  27. X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More deformable, better results,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 9308–9316.
  28. L. Pan, R. Hartley, C. Scheerlinck, M. Liu, X. Yu, and Y. Dai, “High frame rate video reconstruction based on an event camera,” IEEE Trans. Pattern Anal. Mach. Intell., 2020.
  29. X. Zhang and L. Yu, “Unifying motion deblurring and frame interpolation with events,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 17 765–17 774.
  30. C. Zhou, M. Teng, J. Han, J. Liang, C. Xu, G. Cao, and B. Shi, “Deblurring low-light images with events,” Int. J. Comput. Vis., vol. 131, no. 5, pp. 1284–1298, 2023.
  31. B. Wang, J. He, L. Yu, G.-S. Xia, and W. Yang, “Event enhanced high-quality image recovery,” in Eur. Conf. Comput. Vis.   Springer, 2020, pp. 155–171.
  32. L. Yu, B. Wang, X. Zhang, H. Zhang, W. Yang, J. Liu, and G.-S. Xia, “Learning to super-resolve blurry images with events,” IEEE Trans. Pattern Anal. Mach. Intell., 2023.
  33. S. Vasu, A. Shenoi, and A. Rajagopazan, “Joint hdr and super-resolution imaging in motion blur,” in IEEE Int. Conf. Image Process.   IEEE, 2018, pp. 2885–2889.
  34. S. Y. Kim, J. Oh, and M. Kim, “Deep sr-itm: Joint learning of super-resolution and inverse tone-mapping for 4k uhd hdr applications,” in Int. Conf. Comput. Vis., 2019, pp. 3116–3125.
  35. X. Deng, Y. Zhang, M. Xu, S. Gu, and Y. Duan, “Deep coupled feedback network for joint exposure fusion and image super-resolution,” IEEE Trans. Image Process., vol. 30, pp. 3098–3112, 2021.
  36. E. Pérez-Pellitero, S. Catley-Chandar, A. Leonardis, and R. Timofte, “Ntire 2021 challenge on high dynamic range imaging: Dataset, methods and results,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 691–700.
  37. A. O. Akyüz et al., “Deep joint deinterlacing and denoising for single shot dual-iso hdr reconstruction,” IEEE Trans. Image Process., vol. 29, pp. 7511–7524, 2020.
  38. S. Y. Kim and M. Kim, “A multi-purpose convolutional neural network for simultaneous super-resolution and high dynamic range image reconstruction,” in ACCV.   Springer, 2019, pp. 379–394.
  39. J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in Eur. Conf. Comput. Vis.   Springer, 2016, pp. 694–711.
  40. Z. Wan, B. Zhang, D. Chen, P. Zhang, F. Wen, and J. Liao, “Old photo restoration via deep latent space translation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 2071–2087, 2022.
  41. H. Dong, J. Pan, L. Xiang, Z. Hu, X. Zhang, F. Wang, and M.-H. Yang, “Multi-scale boosted dehazing network with dense feature fusion,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 2157–2167.
  42. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-resolution,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 2472–2481.
  43. Y. Zou, Y. Zheng, T. Takatani, and Y. Fu, “Learning to reconstruct high speed and high dynamic range videos from events,” in IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 2024–2033.
  44. J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Calibrating the extrinsics of multiple imus and of individual axes,” in ICRA.   IEEE, 2016, pp. 4304–4311.
  45. H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and high dynamic range video with an event camera,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 6, pp. 1964–1980, 2019.
  46. Y.-L. Liu, W.-S. Lai, Y.-S. Chen, Y.-L. Kao, M.-H. Yang, Y.-Y. Chuang, and J.-B. Huang, “Single-image hdr reconstruction by learning to reverse the camera pipeline,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 1651–1660.
  47. H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event camera simulator,” in Conference on Robot Learning.   PMLR, 2018, pp. 969–982.
  48. X. Wang, Z. Sun, Q. Zhang, Y. Fang, L. Ma, S. Wang, and S. Kwong, “Multi-exposure decomposition-fusion model for high dynamic range image saliency detection,” IEEE Trans. Circuit Syst. Video Technol., vol. 30, no. 12, pp. 4409–4420, 2020.
  49. R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “Hdr-vdp-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions,” ACM Transactions on Graphics., vol. 30, no. 4, pp. 1–14, 2011.
  50. G. Cui, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition,” Optics Communications, vol. 341, pp. 199–209, 2015.
  51. A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. on Communications, vol. 43, no. 12, pp. 2959–2965, 1995.
  52. A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer,” IEEE Sign. Process. Letters, vol. 20, no. 3, pp. 209–212, 2012.
  53. J. Wang, K. C. Chan, and C. C. Loy, “Exploring clip for assessing the look and feel of images,” in Proceedings of the AAAI conference on artificial intelligence, 2023.
  54. J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “Musiq: Multi-scale image quality transformer,” in Int. Conf. Comput. Vis., 2021, pp. 5148–5157.
  55. S. Yang, T. Wu, S. Shi, S. Lao, Y. Gong, M. Cao, J. Wang, and Y. Yang, “Maniqa: Multi-dimension attention network for no-reference image quality assessment,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 1191–1200.
  56. W. Zhang, G. Zhai, Y. Wei, X. Yang, and K. Ma, “Blind image quality assessment via vision-language correspondence: A multitask learning perspective,” in IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 14 071–14 081.
  57. V. Hosu, H. Lin, T. Sziranyi, and D. Saupe, “Koniq-10k: An ecologically valid database for deep learning of blind image quality assessment,” IEEE Trans. Image Process., vol. 29, pp. 4041–4056, 2020.
  58. Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik, “From patches to pictures (paq-2-piq): Mapping the perceptual space of picture quality,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 3575–3585.
  59. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  60. E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” in Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, 2002, pp. 267–276.
  61. G. Jocher, A. Chaurasia, and J. Qiu, “Yolo by ultralytics,” URL: https://github. com/ultralytics/ultralytics, 2023.

Summary

We haven't generated a summary for this paper yet.