Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAnGE: Reachability Analysis for Guaranteed Ergodicity (2404.03186v3)

Published 4 Apr 2024 in cs.RO

Abstract: This paper investigates performance guarantees on coverage-based ergodic exploration methods in environments containing disturbances. Ergodic exploration methods generate trajectories for autonomous robots such that time spent in each area of the exploration space is proportional to the utility of exploring in the area. We find that it is possible to use techniques from reachability analysis to solve for optimal controllers that guarantee ergodic coverage and are robust against disturbances. We formulate ergodic search as a differential game between the controller optimizing for ergodicity and an external disturbance, and we derive the reachability equations for ergodic search using an extended-state Bolza-form transform of the ergodic problem. Contributions include the computation of a continuous value function for the ergodic exploration problem and the derivation of a controller that provides guarantees for coverage under disturbances. Our approach leverages neural-network-based methods to solve the reachability equations; we also construct a robust model-predictive controller for comparison. Simulated and experimental results demonstrate the efficacy of our approach for generating robust ergodic trajectories for search and exploration on a 1D system with an external disturbance force.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescue,” IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 46–56, 2012.
  2. D. C. Schedl, I. Kurmi, and O. Bimber, “An autonomous drone for search and rescue in forests using airborne optical sectioning,” Science Robotics, vol. 6, no. 55, p. eabg1188, 2021. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abg1188
  3. S. Nuske, S. Choudhury, S. Jain, A. Chambers, L. Yoder, S. Scherer, L. Chamberlain, H. Cover, and S. Singh, “Autonomous exploration and motion planning for an unmanned aerial vehicle navigating rivers,” Journal of Field Robotics, vol. 32, no. 8, pp. 1141–1162, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21596
  4. H. Qin, Z. Meng, W. Meng, X. Chen, H. Sun, F. Lin, and M. H. Ang, “Autonomous exploration and mapping system using heterogeneous uavs and ugvs in gps-denied environments,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1339–1350, 2019.
  5. J. G. Serna, F. Vanegas, F. Gonzalez, and D. Flannery, “A review of current approaches for uav autonomous mission planning for mars biosignatures detection,” in 2020 IEEE Aerospace Conference, 2020, pp. 1–15.
  6. L. Dressel and M. J. Kochenderfer, “On the optimality of ergodic trajectories for information gathering tasks,” in 2018 Annual American Control Conference (ACC).   IEEE, 2018, pp. 1855–1861. [Online]. Available: https://ieeexplore.ieee.org/document/8430857/
  7. G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic dynamics for multi-agent systems,” Physica D: Nonlinear Phenomena, vol. 240, no. 4, pp. 432–442, 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S016727891000285X
  8. J. Lygeros, “On reachability and minimum cost optimal control,” Automatica, vol. 40, no. 6, pp. 917–927, 2004. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0005109804000263
  9. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief overview and recent advances,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC).   IEEE, 2017, pp. 2242–2253. [Online]. Available: http://ieeexplore.ieee.org/document/8263977/
  10. M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “Decomposition of reachable sets and tubes for a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3675–3688, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8267187/
  11. S. Bansal and C. J. Tomlin, “DeepReach: A deep learning approach to high-dimensional reachability,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 1817–1824. [Online]. Available: https://ieeexplore.ieee.org/document/9561949/
  12. Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based trajectory safeguard (RTS): A safe and fast reinforcement learning safety layer for continuous control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3663–3670, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9369910/
  13. K. D. Julian and M. J. Kochenderfer, “Guaranteeing safety for neural network-based aircraft collision avoidance systems,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC).   IEEE, 2019, pp. 1–10. [Online]. Available: https://ieeexplore.ieee.org/document/9081748/
  14. L. C. Evans and P. E. Souganidis, “Differential games and representation formulas for solutions of hamilton-jacobi-isaacs equations,” Indiana University Mathematics Journal, vol. 33, no. 5, pp. 773–797, 1984. [Online]. Available: http://www.jstor.org/stable/45010271
  15. V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein, “Implicit neural representations with periodic activation functions,” 2020. [Online]. Available: http://arxiv.org/abs/2006.09661
  16. S. Lin, “Computer solutions of the traveling salesman problem,” The Bell System Technical Journal, vol. 44, no. 10, pp. 2245–2269, 1965.
  17. D. L. Miller and J. F. Pekny, “Exact solution of large asymmetric traveling salesman problems,” Science, vol. 251, no. 4995, pp. 754–761, 1991. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.251.4995.754
  18. J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.
  19. J. Chen and P. Dames, “Distributed and collision-free coverage control of a team of mobile sensors using the convex uncertain voronoi diagram,” in 2020 American Control Conference (ACC), 2020, pp. 5307–5313.
  20. H. Salman, E. Ayvali, and H. Choset, “Multi-agent ergodic coverage with obstacle avoidance,” Proceedings of the International Conference on Automated Planning and Scheduling, vol. 27, pp. 242–249, 2017. [Online]. Available: https://ojs.aaai.org/index.php/ICAPS/article/view/13816
  21. S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin, “FaSTrack: A modular framework for fast and guaranteed safe motion planning,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC).   IEEE, 2017, pp. 1517–1522. [Online]. Available: http://ieeexplore.ieee.org/document/8263867/
  22. A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion planning,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 947–982, 2017. [Online]. Available: https://doi.org/10.1177/0278364917712421
  23. S. E. Scott, T. C. Redd, L. Kuznetsov, I. Mezić, and C. K. Jones, “Capturing deviation from ergodicity at different scales,” vol. 238, no. 16, pp. 1668–1679, 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167278909001523
  24. L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic exploration of distributed information,” vol. 32, no. 1, pp. 36–52, 2016. [Online]. Available: http://arxiv.org/abs/1708.09352
  25. G. De La Torre, K. Flasskamp, A. Prabhakar, and T. D. Murphey, “Ergodic exploration with stochastic sensor dynamics,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 2971–2976. [Online]. Available: http://ieeexplore.ieee.org/document/7525371/
  26. J. A. Preiss*, W. Hönig*, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-quadcopter swarm,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 3299–3304, software available at https://github.com/USC-ACTLab/crazyswarm. [Online]. Available: https://doi.org/10.1109/ICRA.2017.7989376

Summary

We haven't generated a summary for this paper yet.