Blessing or curse? A survey on the Impact of Generative AI on Fake News (2404.03021v1)
Abstract: Fake news significantly influence our society. They impact consumers, voters, and many other societal groups. While Fake News exist for a centuries, Generative AI brings fake news on a new level. It is now possible to automate the creation of masses of high-quality individually targeted Fake News. On the other end, Generative AI can also help detecting Fake News. Both fields are young but developing fast. This survey provides a comprehensive examination of the research and practical use of Generative AI for Fake News detection and creation in 2024. Following the Structured Literature Survey approach, the paper synthesizes current results in the following topic clusters 1) enabling technologies, 2) creation of Fake News, 3) case study social media as most relevant distribution channel, 4) detection of Fake News, and 5) deepfakes as upcoming technology. The article also identifies current challenges and open issues.
- H. Berghel, “Malice domestic: The cambridge analytica dystopia,” vol. 51, no. 5, pp. 84–89, conference Name: Computer. [Online]. Available: https://ieeexplore.ieee.org/document/8364652
- A. Loth. OpenAI GPT-4: Exploring the evolution and impact of generative AI. [Online]. Available: https://alexloth.com/gpt-4-launches-today-the-rise-of-generative-ai-from-neural-networks-to-deepmind-and-openai/
- K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on social media: A data mining perspective.” [Online]. Available: http://arxiv.org/abs/1708.01967
- K. Sharma, F. Qian, H. Jiang, N. Ruchansky, M. Zhang, and Y. Liu, “Combating fake news: A survey on identification and mitigation techniques,” vol. 10, no. 3, pp. 21:1–21:42. [Online]. Available: https://doi.org/10.1145/3305260
- R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection.” [Online]. Available: http://arxiv.org/abs/1811.00770
- H. F. Villela, F. Corrêa, J. S. d. A. N. Ribeiro, A. Rabelo, and D. B. F. Carvalho, “Fake news detection: a systematic literature review of machine learning algorithms and datasets,” vol. 14, no. 1, pp. 47–58, number: 1. [Online]. Available: https://sol.sbc.org.br/journals/index.php/jis/article/view/3020
- M. Leo, S. Sharma, and K. Maddulety, “Machine learning in banking risk management: A literature review,” vol. 7, no. 1, p. 29, publisher: MDPI.
- Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A comprehensive survey of AI-generated content (AIGC): A history of generative AI from GAN to ChatGPT.” [Online]. Available: http://arxiv.org/abs/2303.04226
- K. S. Kalyan, A. Rajasekharan, and S. Sangeetha, “Ammus: A survey of transformer-based pretrained models in natural language processing.”
- C. Melchior and M. Oliveira, “A systematic literature review of the motivations to share fake news on social media platforms and how to fight them,” p. 14614448231174224, publisher: SAGE Publications. [Online]. Available: https://doi.org/10.1177/14614448231174224
- X. Zhou and R. Zafarani, “A survey of fake news: Fundamental theories, detection methods, and opportunities,” vol. 53, no. 5, pp. 109:1–109:40. [Online]. Available: https://doi.org/10.1145/3395046
- A. Bondielli and F. Marcelloni, “A survey on fake news and rumour detection techniques,” vol. 497, pp. 38–55. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025519304372
- Z. Khanjani, G. Watson, and V. P. Janeja, “Audio deepfakes: A survey,” vol. 5, p. 1001063. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869423/
- C. Biever, “ChatGPT broke the turing test — the race is on for new ways to assess AI,” vol. 619, no. 7971, pp. 686–689, bandiera_abtest: a Cg_type: News Feature Number: 7971 Publisher: Nature Publishing Group Subject_term: Computer science, Mathematics and computing, Technology, Society. [Online]. Available: https://www.nature.com/articles/d41586-023-02361-7
- R. Gozalo-Brizuela and E. C. Garrido-Merchan, “ChatGPT is not all you need. a state of the art review of large generative AI models.” [Online]. Available: http://arxiv.org/abs/2301.04655
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding.”
- H. Jwa, D. Oh, K. Park, J. M. Kang, and H. Lim, “exBAKE: Automatic fake news detection model based on bidirectional encoder representations from transformers (BERT),” vol. 9, no. 19, p. 4062, number: 19 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2076-3417/9/19/4062
- A. Maronikolakis, H. Schutze, and M. Stevenson, “Identifying automatically generated headlines using transformers.” [Online]. Available: http://arxiv.org/abs/2009.13375
- J. Cao, P. Qi, Q. Sheng, T. Yang, J. Guo, and J. Li, “Exploring the role of visual content in fake news detection.” [Online]. Available: http://arxiv.org/abs/2003.05096
- C. Liu, X. Wu, M. Yu, G. Li, J. Jiang, W. Huang, and X. Lu, “A two-stage model based on BERT for short fake news detection,” in Knowledge Science, Engineering and Management, ser. Lecture Notes in Computer Science, C. Douligeris, D. Karagiannis, and D. Apostolou, Eds. Springer International Publishing, pp. 172–183.
- A. Karnyoto, C. Sun, B. Liu, and X. Wang, “Transfer learning and GRU-CRF augmentation for covid-19 fake news detection,” vol. 19, no. 2, pp. 639–658. [Online]. Available: https://doiserbia.nb.rs/Article.aspx?ID=1820-02142100053K
- T. N. F. Novo, “MisInfoBot: fight misinformation about COVID on social media.”
- K. Bansal, S. Agarwal, and N. Vyas, “Deepfake detection using CNN and DCGANS to drop-out fake multimedia content: A hybrid approach,” in 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/10263628
- R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang, and Y. Liu, “FakeSpotter: A simple yet robust baseline for spotting AI-synthesized fake faces.” [Online]. Available: http://arxiv.org/abs/1909.06122
- J. P. Cardenuto, J. Yang, R. Padilha, R. Wan, D. Moreira, H. Li, S. Wang, F. Andaló, S. Marcel, and A. Rocha, “The age of synthetic realities: Challenges and opportunities.” [Online]. Available: http://arxiv.org/abs/2306.11503
- A. Mosallanezhad, K. Shu, and H. Liu, “Topic-preserving synthetic news generation: An adversarial deep reinforcement learning approach.” [Online]. Available: http://arxiv.org/abs/2010.16324
- F. Cocchi, L. Baraldi, S. Poppi, M. Cornia, L. Baraldi, and R. Cucchiara, “Unveiling the impact of image transformations on deepfake detection: An experimental analysis,” in Image Analysis and Processing – ICIAP 2023, ser. Lecture Notes in Computer Science, G. L. Foresti, A. Fusiello, and E. Hancock, Eds. Springer Nature Switzerland, pp. 345–356.
- H. Allcott and M. Gentzkow, “Social media and fake news in the 2016 election.” [Online]. Available: https://papers.ssrn.com/abstract=2903810
- D. M. J. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M. Greenhill, F. Menczer, M. J. Metzger, B. Nyhan, G. Pennycook, D. Rothschild, M. Schudson, S. A. Sloman, C. R. Sunstein, E. A. Thorson, D. J. Watts, and J. L. Zittrain, “The science of fake news,” vol. 359, no. 6380, pp. 1094–1096. [Online]. Available: http://arxiv.org/abs/2307.07903
- X. Zhou and R. Zafarani, “Network-based fake news detection: A pattern-driven approach.” [Online]. Available: http://arxiv.org/abs/1906.04210
- S. Bradshaw, H. Bailey, and P. N. Howard, “Industrialized disinformation: 2020 global inventory of organized social media manipulation (computational propaganda research project).”
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need.” [Online]. Available: http://arxiv.org/abs/1706.03762
- L. Sandrini and R. Somogyi, “Generative AI and deceptive news consumption,” vol. 232, p. 111317. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165176523003427
- E. Ferrara, “GenAI against humanity: nefarious applications of generative artificial intelligence and large language models.” [Online]. Available: https://doi.org/10.1007/s42001-024-00250-1
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks.” [Online]. Available: http://arxiv.org/abs/1406.2661
- D. P. Kingma and M. Welling, “Auto-encoding variational bayes.” [Online]. Available: http://arxiv.org/abs/1312.6114
- S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang, J. Xue, and F. Wei, “The era of 1-bit LLMs: All large language models are in 1.58 bits.” [Online]. Available: http://arxiv.org/abs/2402.17764
- A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding by generative pre-training.”
- M. Schütz, A. Schindler, M. Siegel, and K. Nazemi, “Automatic fake news detection with pre-trained transformer models,” in Pattern Recognition. ICPR International Workshops and Challenges, A. Del Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, and R. Vezzani, Eds. Springer International Publishing, vol. 12667, pp. 627–641, series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-030-68787-8_45
- A. Loth, “The rise of generative AI: Revolutionizing innovation and enhancing human collaboration.” [Online]. Available: https://www.researchgate.net/publication/369625534_The_Rise_of_Generative_AI_Revolutionizing_Innovation_and_Enhancing_Human_Collaboration
- C. L. Otis, True Or False: A CIA Analyst’s Guide to Spotting Fake News. Feiwel & Friends.
- A. Loth, Decisively Digital: From Creating a Culture to Designing Strategy. John Wiley & Sons.
- M. Schütz, J. Böck, M. Andresel, A. Kirchknopf, D. Liakhovets, D. Slijepčević, and A. Schindler, “AIT_fhstp at CheckThat! 2022: Cross-lingual fake news detection with a large pre-trained transformer.”
- A. Loth, Visual analytics with Tableau. John Wiley & Sons.
- M. E. Peters, M. Neumann, L. Zettlemoyer, and W.-t. Yih, “Dissecting contextual word embeddings: Architecture and representation.”
- N. R. de Oliveira, P. S. Pisa, M. A. Lopez, D. S. V. de Medeiros, and D. M. F. Mattos, “Identifying fake news on social networks based on natural language processing: Trends and challenges,” vol. 12, no. 1, p. 38, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2078-2489/12/1/38
- J. Howard and S. Ruder, “Universal language model fine-tuning for text classification.”
- R. Vijjali, P. Potluri, S. Kumar, and S. Teki, “Two stage transformer model for COVID-19 fake news detection and fact checking.” [Online]. Available: http://arxiv.org/abs/2011.13253
- S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early experiments with GPT-4.” [Online]. Available: http://arxiv.org/abs/2303.12712
- A. Zhavoronkov, P. Mamoshina, Q. Vanhaelen, M. Scheibye-Knudsen, A. Moskalev, and A. Aliper, “Artificial intelligence for aging and longevity research: Recent advances and perspectives,” vol. 49, pp. 49–66. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S156816371830240X
- L. Jin, F. Tan, S. Jiang, and R. Köker, “Generative adversarial network technologies and applications in computer vision,” vol. 2020. [Online]. Available: https://doi.org/10.1155/2020/1459107
- A. Arora and A. Arora, “Generative adversarial networks and synthetic patient data: current challenges and future perspectives,” vol. 9, no. 2, pp. 190–193, publisher: Cambridge University Press. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345230/
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners.”
- J. D. Weisz, M. Muller, J. He, and S. Houde, “Toward general design principles for generative AI applications.” [Online]. Available: http://arxiv.org/abs/2301.05578
- F. M. Simon, S. Altay, and H. Mercier, “Misinformation reloaded? fears about the impact of generative AI on misinformation are overblown.” [Online]. Available: https://misinforeview.hks.harvard.edu/article/misinformation-reloaded-fears-about-the-impact-of-generative-ai-on-misinformation-are-overblown/
- S. Bradshaw, R. DiResta, and C. Miller, “Playing both sides: Russian state-backed media coverage of the #BlackLivesMatter movement,” p. 19401612221082052, publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/19401612221082052
- S. Lewandowsky and S. Van Der Linden, “Countering misinformation and fake news through inoculation and prebunking,” vol. 32, no. 2, pp. 348–384. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/10463283.2021.1876983
- K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu, “Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media,” vol. 8, no. 3, pp. 171–188, publisher: Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New ….
- J. Yang and Y. Tian, ““others are more vulnerable to fake news than i am”: Third-person effect of COVID-19 fake news on social media users,” vol. 125, p. 106950. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867061/
- G. Pennycook and D. G. Rand, “The psychology of fake news,” vol. 25, no. 5, pp. 388–402, publisher: Elsevier. [Online]. Available: https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(21)00051-6
- Y. Liu and Y.-F. Wu, “Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks,” vol. 32, no. 1, number: 1. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/11268
- P. Przybyla, “Capturing the style of fake news,” vol. 34, no. 1, pp. 490–497, number: 01. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/5386
- F. Qian, C. Gong, K. Sharma, and Y. Liu, “Neural user response generator: Fake news detection with collective user intelligence,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, pp. 3834–3840. [Online]. Available: https://www.ijcai.org/proceedings/2018/533
- K. Shu, S. Wang, and H. Liu, “Beyond news contents: The role of social context for fake news detection,” in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, ser. WSDM ’19. Association for Computing Machinery, pp. 312–320. [Online]. Available: https://dl.acm.org/doi/10.1145/3289600.3290994
- R. M. Silva, R. L. S. Santos, T. A. Almeida, and T. A. S. Pardo, “Towards automatically filtering fake news in portuguese,” vol. 146, p. 113199. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417420300257
- G. Pennycook and D. G. Rand, “Who falls for fake news? the roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking,” vol. 88, no. 2, pp. 185–200, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jopy.12476. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jopy.12476
- E. C. Tandoc Jr, Z. W. Lim, and R. Ling, “Defining “fake news” a typology of scholarly definitions,” vol. 6, no. 2, pp. 137–153, publisher: Taylor & Francis.
- J. L. Egelhofer and S. Lecheler, “Fake news as a two-dimensional phenomenon: A framework and research agenda,” vol. 43, no. 2, pp. 97–116, publisher: Taylor & Francis.
- M. Osmundsen, A. Bor, P. B. Vahlstrup, A. Bechmann, and M. B. Petersen, “Partisan polarization is the primary psychological motivation behind political fake news sharing on twitter,” vol. 115, no. 3, pp. 999–1015, publisher: Cambridge University Press. [Online]. Available: https://www.cambridge.org/core/journals/american-political-science-review/article/abs/partisan-polarization-is-the-primary-psychological-motivation-behind-political-fake-news-sharing-on-twitter/3F7D2098CD87AE5501F7AD4A7FA83602
- Pôle d’excellence cyber: Lutte contre les manipulations de l’information avril 2023. [Online]. Available: https://www.pole-excellence-cyber.org/wp-content/uploads/2024/01/LMI_PEC_2023.pdf
- Alexander Loth (1 paper)
- Martin Kappes (2 papers)
- Marc-Oliver Pahl (7 papers)