Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental Learning with Concept Drift Detection and Prototype-based Embeddings for Graph Stream Classification (2404.02572v2)

Published 3 Apr 2024 in cs.LG

Abstract: Data stream mining aims at extracting meaningful knowledge from continually evolving data streams, addressing the challenges posed by nonstationary environments, particularly, concept drift which refers to a change in the underlying data distribution over time. Graph structures offer a powerful modelling tool to represent complex systems, such as, critical infrastructure systems and social networks. Learning from graph streams becomes a necessity to understand the dynamics of graph structures and to facilitate informed decision-making. This work introduces a novel method for graph stream classification which operates under the general setting where a data generating process produces graphs with varying nodes and edges over time. The method uses incremental learning for continual model adaptation, selecting representative graphs (prototypes) for each class, and creating graph embeddings. Additionally, it incorporates a loss-based concept drift detection mechanism to recalculate graph prototypes when drift is detected.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonstationary environments: A survey,” IEEE Computational Intelligence Magazine, vol. 10, no. 4, pp. 12–25, 2015.
  2. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept drift adaptation,” ACM Computing Surveys, vol. 46, no. 4, p. 44, 2014.
  3. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under concept drift: A review,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.
  4. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2020.
  5. V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A review and comparison of state of the art algorithms,” Neurocomputing, vol. 275, pp. 1261–1274, 2018.
  6. J. Li, K. Malialis, and M. M. Polycarpou, “Autoencoder-based anomaly detection in streaming data with incremental learning and concept drift adaptation,” in 2023 International Joint Conference on Neural Networks (IJCNN), 2023.
  7. J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,” in Advances in Artificial Intelligence–SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-Ocotber 1, 2004. Proceedings 17, 2004, pp. 286–295.
  8. R. Elwell and R. Polikar, “Incremental learning of concept drift in nonstationary environments,” IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1517–1531, 2011.
  9. K. Malialis, C. G. Panayiotou, and M. M. Polycarpou, “Online learning with adaptive rebalancing in nonstationary environments,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 10, pp. 4445–4459, 2020.
  10. B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensemble learning for data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132–156, 2017.
  11. K. Malialis, M. Roveri, C. Alippi, C. G. Panayiotou, and M. M. Polycarpou, “A hybrid active-passive approach to imbalanced nonstationary data stream classification,” in 2022 IEEE Symposium Series on Computational Intelligence (SSCI).   IEEE, 2022, pp. 1021–1027.
  12. A. Artelt, K. Malialis, C. Panayiotou, M. Polycarpou, and B. Hammer, “Unsupervised unlearning of concept drift with autoencoders,” in 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 2023.
  13. Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 249–270, 2020.
  14. M. Jin, H. Y. Koh, Q. Wen, D. Zambon, C. Alippi, G. I. Webb, I. King, and S. Pan, “A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection,” arXiv preprint arXiv:2307.03759, 2023.
  15. S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Samatova, “Anomaly detection in dynamic networks: a survey,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 7, no. 3, pp. 223–247, 2015.
  16. I. Barnett and J.-P. Onnela, “Change point detection in correlation networks,” Scientific reports, vol. 6, no. 1, p. 18893, 2016.
  17. L. Peel and A. Clauset, “Detecting change points in the large-scale structure of evolving networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2015.
  18. J. D. Wilson, N. T. Stevens, and W. H. Woodall, “Modeling and detecting change in temporal networks via the degree corrected stochastic block model,” Quality and Reliability Engineering International, vol. 35, no. 5, pp. 1363–1378, 2019.
  19. D. Zambon, C. Alippi, and L. Livi, “Concept drift and anomaly detection in graph streams,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5592–5605, 2018.
  20. D. Grattarola, D. Zambon, L. Livi, and C. Alippi, “Change detection in graph streams by learning graph embeddings on constant-curvature manifolds,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 6, pp. 1856–1869, 2019.
  21. K. Riesen, M. Neuhaus, and H. Bunke, “Graph embedding in vector spaces by means of prototype selection,” in Graph-Based Representations in Pattern Recognition: 6th IAPR-TC-15 International Workshop, GbRPR 2007, Alicante, Spain, June 11-13, 2007. Proceedings 6.   Springer, 2007, pp. 383–393.
  22. K. Riesen and H. Bunke, “Iam graph database repository for graph based pattern recognition and machine learning,” in Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, SSPR & SPR 2008, Orlando, USA, December 4-6, 2008. Proceedings.   Springer, 2008, pp. 287–297.
  23. A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.
  24. Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An exact graph edit distance algorithm for solving pattern recognition problems,” in 4th International Conference on Pattern Recognition Applications and Methods 2015, 2015.
  25. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.
  27. A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the 30th International Conference on Machine Learning, 2013.
  28. F. Chollet et al., “Keras,” https://keras.io, 2015.
  29. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  30. Y. Sun, M. S. Kamel, and Y. Wang, “Boosting for learning multiple classes with imbalanced class distribution,” in Sixth International Conference on Data Mining (ICDM’06).   IEEE, 2006, pp. 592–602.
  31. H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge and Data Engineering, no. 9, pp. 1263–1284, 2008.
  32. J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream learning algorithms,” Machine Learning, vol. 90, no. 3, pp. 317–346, 2013.
  33. S. Pan, X. Zhu, C. Zhang, and S. Y. Philip, “Graph stream classification using labeled and unlabeled graphs,” in 2013 IEEE 29th International Conference on Data Engineering (ICDE).   IEEE, 2013, pp. 398–409.
  34. I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning with drifting streaming data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 27–39, 2013.
  35. K. Malialis, C. G. Panayiotou, and M. M. Polycarpou, “Nonstationary data stream classification with online active learning and siamese neural networks,” Neurocomputing, vol. 512, pp. 235–252, 2022.
  36. K. Malialis, D. Papatheodoulou, S. Filippou, C. G. Panayiotou, and M. M. Polycarpou, “Data augmentation on-the-fly and active learning in data stream classification,” in 2022 IEEE Symposium Series on Computational Intelligence (SSCI).   IEEE, 2022, pp. 1408–1414.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets