Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

scenario.center: Methods from Real-world Data to a Scenario Database (2404.02561v3)

Published 3 Apr 2024 in cs.SE

Abstract: Scenario-based testing is a promising method to develop, verify and validate automated driving systems (ADS) since pure on-road testing seems inefficient for complex traffic environments. A major challenge for this approach is the provision and management of a sufficient number of scenarios to test a system. The provision, generation, and management of scenario at scale is investigated in current research. This paper presents the scenario database scenario.center ( https://scenario.center ) to process and manage scenario data covering the needs of scenario-based testing approaches comprehensively and automatically. Thereby, requirements for such databases are described. Based on those, a four-step approach is proposed. Firstly, a common input format with defined quality requirements is defined. This is utilized for detecting events and base scenarios automatically. Furthermore, methods for searchability, evaluation of data quality and different scenario generation methods are proposed to allow a broad applicability serving different needs. For evaluation, the methodology is compared to state-of-the-art scenario databases. Finally, the application and capabilities of the database are shown by applying the methodology to the inD dataset. A public demonstration of the database interface is provided at https://scenario.center .

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. International Organization for Standardization, “ISO 21448:2022 - Road vehicles - Safety of the intended functionality,” 2022.
  2. H. Winner, K. Lemmer, T. Form, and J. Mazzega, “PEGASUS—first steps for the safe introduction of automated driving,” in Lecture Notes in Mobility.   Springer International Publishing, jun 2018, pp. 185–195.
  3. S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Survey on scenario-based safety assessment of automated vehicles,” IEEE Access, vol. 8, pp. 87 456–87 477, 2020.
  4. B. Engel and N. Dillmann, “Asam openx,” in Online Presentation, vol. 10, 2020.
  5. H. Weber, C. Glasmacher, M. Schuldes, N. Wagener, and L. Eckstein, “Holistic driving scenario concept for urban traffic,” 2023 IEEE IV, pp. 1–8, 2023.
  6. T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development, test and validation of automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium, June 2018, pp. 1821–1827.
  7. C. Glasmacher, M. Schuldes, P. Topalakatti, P. Hristov, H. Weber, and L. Eckstein, “Scenario-based model of the odd through scenario databases,” https://vvm-project.de/https://www.vvm-projekt.de/en/publications, 2023.
  8. M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto, M. Schuldes, H. Weber, N. Wagener, C. Neurohr, M. H. Bollmann, F. Körtke et al., “6-layer model for a structured description and categorization of urban traffic and environment,” IEEE Access, vol. 9, pp. 59 131–59 147, 2021.
  9. Gesamtverband der Deutschen Versicherungswirtschaft e. V., “Unfalltypen-katalog - leitfaden zur bestimmung des unfalltyps,” Unfallforschung der Versicherer, 2016.
  10. E. de Gelder, J. Manders, C. Grappiolo, J.-P. Paardekooper, O. O. den Camp, and B. D. Schutter, “Real-world scenario mining for the assessment of automated vehicles,” in 2020 IEEE 23rd ITSC.   IEEE, sep 2020.
  11. U. Economic and S. Council, “Ece/trans/wp. 29/2020/81: Proposal for a new un regulation on uniform provisions concerning the approval of vehicles with regards to automated lane keeping system.”
  12. N. Epple, T. Hankofer, and A. Riener, “Scenario classes in naturalistic driving: Autoencoder-based spatial and time-sequential clustering of surrounding object trajectories,” in 2020 IEEE 23rd ITSC, 2020, pp. 1–6.
  13. A. Tenbrock, A. König, T. Keutgens, and H. Weber, “The conscend dataset: Concrete scenarios from the highd dataset according to alks regulation unece r157 in openx,” in 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), 2021, pp. 174–181.
  14. M. Scholtes, M. Schuldes, H. Weber, N. Wagener, M. Hoss, and L. Eckstein, “Omegaformat: A comprehensive format of traffic recordings for scenario extraction,” FAS-Workshop, pp. 195–205, 2022.
  15. C. Glasmacher, H. Weber, M. Schuldes, N. Wagener, and L. Eckstein, “Generation of concrete parameters from logical urban driving scenarios based on hybrid graphs,” in VEHITS - Conference, 2023.
  16. B. Schütt, J. Ransiek, T. Braun, and E. Sax, “1001 ways of scenario generation for testing of self-driving cars: A survey,” 2023.
  17. H. Weber, J. Bock, J. Klimke, C. Roesener, J. Hiller, R. Krajewski, A. Zlocki, and L. Eckstein, “A framework for definition of logical scenarios for safety assurance of automated driving,” Traffic Injury Prevention, vol. 20, no. sup1, pp. S65–S70, jun 2019.
  18. A.-M. Jacobo, U. Nobuyuki, Y. Kunio, O. Koichiro, K. Eiichi, and T. Satoshi, “Development of a safety assurance process for autonomous vehicles in japan,” in Proceedings of ESV Conference, 2019.
  19. M. Brini, E. Arnoux, B. Foyer, G. Bresson, L. Durville, F. Gaillard, and M. Pajon, “MOOVE & MOSAR Projects: a scenario library for designing & validating ADS,” in Driving Simulation Conference (DSC), Antibes, France, Sep. 2020.
  20. Safetypool™ scenario database. [Online]. Available: https://www.safetypool.ai/database
  21. G. Moioli, “Introducing blender 3.0,” in Introduction to Blender 3.0: Learn Organic and Architectural Modeling, Lighting, Materials, Painting, Rendering, and Compositing with Blender.   Springer, 2022, pp. 1–63.
  22. T. Brade and C. Glasmacher. Towards a sufficient odd completeness. [Online]. Available: https://www.vvm-projekt.de/final-event
  23. C. Glasmacher, M. Schuldes, H. Weber, N. Wagener, and L. Eckstein, “Acquire driving scenarios efficiently: A framework for prospective assessment of cost-optimal scenario acquisition,” arXiv preprint arXiv:2307.11647, 2023.
  24. J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, “The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections,” in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1929–1934.
  25. esmini, https://github.com/esmini/esmini.
  26. SUNRISE consortium, https://ccam-sunrise-project.eu/.

Summary

We haven't generated a summary for this paper yet.