Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Quantum Flux and Quantum Ergodicity for Cross Sections (2404.02296v1)

Published 2 Apr 2024 in math.AP, math-ph, and math.MP

Abstract: For sequences of quantum ergodic eigenfunctions, we define the quantum flux norm associated to a codimension $1$ submanifold $\Sigma$ of a non-degenerate energy surface. We prove restrictions of eigenfunctions to $\Sigma$, realized using the quantum flux norm, are quantum ergodic. We compare this result to known results from \cite{CTZ} in the case of Euclidean domains and hyperfurfaces. As a further application, we consider complexified analytic eigenfunctions and prove a second microlocal analogue of \cite{CTZ} in that context.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Y. Colin de Verdière. Ergodicité et fonctions propres du laplacien. Comm. Math. Phys., 102(3):497–502, 1985.
  2. Hans Christianson. Quantum monodromy and non-concentration near a closed semi-hyperbolic orbit. Trans. Amer. Math. Soc., 363(7):3373–3438, 2011.
  3. Quantum ergodic restriction for Cauchy data: interior que and restricted que. Math. Res. Lett., 20(3):465–475, 2013.
  4. Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity, 26(1):35–52, 2013.
  5. Grauert tubes and the homogeneous Monge-Ampère equation. J. Differential Geom., 34(2):561–570, 1991.
  6. Pointwise bounds for Steklov eigenfunctions. J. Geom. Anal., 29(1):142–193, 2019.
  7. Ergodicité et limite semi-classique. Comm. Math. Phys., 109(2):313–326, 1987.
  8. Quantum ergodicity of boundary values of eigenfunctions. Comm. Math. Phys., 248(1):119–168, 2004.
  9. Birkhoff normal forms in semi-classical inverse problems. Math. Res. Lett., 9(2-3):337–362, 2002.
  10. Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic Riemannian manifolds. Ann. Sci. École Norm. Sup. (4), 29(6):669–736, 1996.
  11. Johannes Sjostrand. Density of resonances for strictly convex analytic obstacles. Canad. J. Math., 48(2):397–447, 1996. With an appendix by M. Zworski.
  12. A. I. Šnirel′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPTman. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181–182, 1974.
  13. Quantum monodromy and semi-classical trace formulae. J. Math. Pures Appl. (9), 81(1):1–33, 2002.
  14. Counting nodal lines which touch the boundary of an analytic domain. J. Differential Geom., 81(3):649–686, 2009.
  15. Quantum ergodic restriction theorems: manifolds without boundary. Geom. Funct. Anal., 23(2):715–775, 2013.
  16. Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55(4):919–941, 1987.
  17. Steve Zelditch. Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I. In Spectral geometry, volume 84 of Proc. Sympos. Pure Math., pages 299–339. Amer. Math. Soc., Providence, RI, 2012.
  18. Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
  19. Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys., 175(3):673–682, 1996.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets