2000 character limit reached
Quantum Flux and Quantum Ergodicity for Cross Sections (2404.02296v1)
Published 2 Apr 2024 in math.AP, math-ph, and math.MP
Abstract: For sequences of quantum ergodic eigenfunctions, we define the quantum flux norm associated to a codimension $1$ submanifold $\Sigma$ of a non-degenerate energy surface. We prove restrictions of eigenfunctions to $\Sigma$, realized using the quantum flux norm, are quantum ergodic. We compare this result to known results from \cite{CTZ} in the case of Euclidean domains and hyperfurfaces. As a further application, we consider complexified analytic eigenfunctions and prove a second microlocal analogue of \cite{CTZ} in that context.
- Y. Colin de Verdière. Ergodicité et fonctions propres du laplacien. Comm. Math. Phys., 102(3):497–502, 1985.
- Hans Christianson. Quantum monodromy and non-concentration near a closed semi-hyperbolic orbit. Trans. Amer. Math. Soc., 363(7):3373–3438, 2011.
- Quantum ergodic restriction for Cauchy data: interior que and restricted que. Math. Res. Lett., 20(3):465–475, 2013.
- Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity, 26(1):35–52, 2013.
- Grauert tubes and the homogeneous Monge-Ampère equation. J. Differential Geom., 34(2):561–570, 1991.
- Pointwise bounds for Steklov eigenfunctions. J. Geom. Anal., 29(1):142–193, 2019.
- Ergodicité et limite semi-classique. Comm. Math. Phys., 109(2):313–326, 1987.
- Quantum ergodicity of boundary values of eigenfunctions. Comm. Math. Phys., 248(1):119–168, 2004.
- Birkhoff normal forms in semi-classical inverse problems. Math. Res. Lett., 9(2-3):337–362, 2002.
- Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic Riemannian manifolds. Ann. Sci. École Norm. Sup. (4), 29(6):669–736, 1996.
- Johannes Sjostrand. Density of resonances for strictly convex analytic obstacles. Canad. J. Math., 48(2):397–447, 1996. With an appendix by M. Zworski.
- A. I. Šnirel′′{}^{\prime}start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPTman. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181–182, 1974.
- Quantum monodromy and semi-classical trace formulae. J. Math. Pures Appl. (9), 81(1):1–33, 2002.
- Counting nodal lines which touch the boundary of an analytic domain. J. Differential Geom., 81(3):649–686, 2009.
- Quantum ergodic restriction theorems: manifolds without boundary. Geom. Funct. Anal., 23(2):715–775, 2013.
- Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55(4):919–941, 1987.
- Steve Zelditch. Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I. In Spectral geometry, volume 84 of Proc. Sympos. Pure Math., pages 299–339. Amer. Math. Soc., Providence, RI, 2012.
- Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
- Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys., 175(3):673–682, 1996.