Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A shared compilation stack for distributed-memory parallelism in stencil DSLs (2404.02218v1)

Published 2 Apr 2024 in cs.DC and cs.MS

Abstract: Domain Specific Languages (DSLs) increase programmer productivity and provide high performance. Their targeted abstractions allow scientists to express problems at a high level, providing rich details that optimizing compilers can exploit to target current- and next-generation supercomputers. The convenience and performance of DSLs come with significant development and maintenance costs. The siloed design of DSL compilers and the resulting inability to benefit from shared infrastructure cause uncertainties around longevity and the adoption of DSLs at scale. By tailoring the broadly-adopted MLIR compiler framework to HPC, we bring the same synergies that the machine learning community already exploits across their DSLs (e.g. Tensorflow, PyTorch) to the finite-difference stencil HPC community. We introduce new HPC-specific abstractions for message passing targeting distributed stencil computations. We demonstrate the sharing of common components across three distinct HPC stencil-DSL compilers: Devito, PSyclone, and the Open Earth Compiler, showing that our framework generates high-performance executables based upon a shared compiler ecosystem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com