Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Online Joint Optimization Approach for QoE Maximization in UAV-Enabled Mobile Edge Computing (2404.02166v1)

Published 23 Mar 2024 in cs.IT and math.IT

Abstract: Given flexible mobility, rapid deployment, and low cost, unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) shows great potential to compensate for the lack of terrestrial edge computing coverage. However, limited battery capacity, computing and spectrum resources also pose serious challenges for UAV-enabled MEC, which shorten the service time of UAVs and degrade the quality of experience (QoE) of user devices (UDs) {\color{b} without effective control approach}. In this work, we consider a UAV-enabled MEC scenario where a UAV serves as an aerial edge server to provide computing services for multiple ground UDs. Then, a joint task offloading, resource allocation, and UAV trajectory planning optimization problem (JTRTOP) is formulated to maximize the QoE of UDs under the UAV energy consumption constraint. To solve the JTRTOP that is proved to be a future-dependent and NP-hard problem, an online joint optimization approach (OJOA) is proposed. Specifically, the JTRTOP is first transformed into a per-slot real-time optimization problem (PROP) by using the Lyapunov optimization framework. Then, a two-stage optimization method based on game theory and convex optimization is proposed to solve the PROP. Simulation results validate that the proposed approach can achieve superior system performance compared to the other benchmark schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. C. Dong, Y. Shen, Y. Qu, K. Wang, J. Zheng, Q. Wu, and F. Wu, “UAVs as an intelligent service: Boosting edge intelligence for air-ground integrated networks,” IEEE Netw., vol. 35, no. 4, pp. 167–175, 2021.
  2. B. Hou, S. Yang, F. A. Kuipers, L. Jiao, and X. Fu, “EAVS: Edge-assisted adaptive video streaming with fine-grained serverless pipelines,” in Proc. of IEEE INFOCOM, 2023.
  3. L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for mobile augmented reality,” in Proc. of ACM MobiCom, 2019, pp. 1–16.
  4. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016.
  5. A. Hekmati, P. Teymoori, T. D. Todd, D. Zhao, and G. Karakostas, “Optimal mobile computation offloading with hard deadline constraints,” IEEE Trans. Mob. Comput., vol. 19, no. 9, pp. 2160–2173, 2020.
  6. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
  7. Y. Qu, H. Dai, L. Wang, W. Wang, F. Wu, H. Tan, S. Tang, and C. Dong, “CoTask: Correlation-aware task offloading in edge computing,” World Wide Web, vol. 25, no. 5, pp. 2185–2213, 2022.
  8. M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial on UAVs for wireless networks: Applications, challenges, and open problems,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
  9. J. Li, G. Sun, L. Duan, and Q. Wu, “Multi-objective optimization for UAV swarm-assisted IoT with virtual antenna arrays,” IEEE Trans. Mob. Comput., 2023.
  10. J. Li, G. Sun, H. Kang, A. Wang, S. Liang, Y. Liu, and Y. Zhang, “Multi-objective optimization approaches for physical layer secure communications based on collaborative beamforming in UAV networks,” IEEE/ACM Trans. Networking, 2023.
  11. Y. Qu, H. Sun, C. Dong, J. Kang, H. Dai, Q. Wu, and S. Guo, “Elastic collaborative edge intelligence for UAV swarm: Architecture, challenges, and opportunities,” IEEE Commun. Mag., 2023.
  12. P. A. Apostolopoulos, G. Fragkos, E. Tsiropoulou, and S. Papavassiliou, “Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty,” IEEE Trans. Mob. Comput., vol. 22, no. 1, pp. 175–190, 2023.
  13. P. Vamvakas, E. Tsiropoulou, and S. Papavassiliou, “On the prospect of UAV-assisted communications paradigm in public safety networks,” in Proc. of IEEE INFOCOM, 2019, pp. 762–767.
  14. Y. Xu, T. Zhang, Y. Liu, D. Yang, L. Xiao, and M. Tao, “UAV-assisted MEC networks with aerial and ground cooperation,” IEEE Trans. Wirel. Commun., vol. 20, no. 12, pp. 7712–7727, 2021.
  15. X. Zhang, J. Zhang, J. Xiong, L. Zhou, and J. Wei, “Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA,” IEEE Internet Things J., vol. 7, no. 6, pp. 5613–5627, 2020.
  16. Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading and trajectory design for UAV-enabled mobile edge computing systems,” IEEE Internet Things J., vol. 6, no. 2, pp. 1879–1892, 2019.
  17. Z. Yang, S. Bi, and Y. A. Zhang, “Online trajectory and resource optimization for stochastic UAV-enabled MEC systems,” IEEE Trans. Wirel. Commun., vol. 21, no. 7, pp. 5629–5643, 2022.
  18. L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan, “Deep reinforcement learning based dynamic trajectory control for UAV-assisted mobile edge computing,” IEEE Trans. Mob. Comput., vol. 21, no. 10, pp. 3536–3550, 2022.
  19. L. T. Hoang, C. T. Nguyen, and A. T. Pham, “Deep reinforcement learning-based online resource management for UAV-assisted edge computing with dual connectivity,” IEEE/ACM Trans. Networking, 2023.
  20. R. Zhou, X. Wu, H. Tan, and R. Zhang, “Two time-scale joint service caching and task offloading for UAV-assisted mobile edge computing,” in Proc. of IEEE INFOCOM, 2022, pp. 1189–1198.
  21. Y. Qu, H. Dai, H. Wang, C. Dong, F. Wu, S. Guo, and Q. Wu, “Service provisioning for UAV-enabled mobile edge computing,” IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3287–3305, 2021.
  22. H. Jiang, X. Dai, Z. Xiao, and A. Iyengar, “Joint task offloading and resource allocation for energy-constrained mobile edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 4000–4015, 2023.
  23. B. Liang and Z. J. Haas, “Predictive distance-based mobility management for PCS networks,” in Proc. of IEEE INFOCOM, 1999, pp. 1377–1384.
  24. Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning for UAV-mounted mobile edge computing with deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5723–5728, 2020.
  25. S. Batabyal and P. Bhaumik, “Mobility models, traces and impact of mobility on opportunistic routing algorithms: A survey,” IEEE Commun. Surv. Tutorials, vol. 17, no. 3, pp. 1679–1707, 2015.
  26. L. Zhang, Z. Zhang, L. Min, C. Tang, H. Zhang, Y. Wang, and P. Cai, “Task offloading and trajectory control for UAV-assisted mobile edge computing using deep reinforcement learning,” IEEE Access, vol. 9, pp. 53 708–53 719, 2021.
  27. G. Sun, X. Zheng, Z. Sun, Q. Wu, J. Li, Y. Liu, and V. C. Leung, “UAV-enabled secure communications via collaborative beamforming with imperfect eavesdropper information,” IEEE Trans. Mob. Comput., 2023.
  28. Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing UAV,” IEEE Trans. Wirel. Commun., vol. 18, no. 4, pp. 2329–2345, 2019.
  29. A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and C. S. Hong, “Joint communication, computation, caching, and control in big data multi-access edge computing,” IEEE Trans. Mob. Comput., vol. 19, no. 6, pp. 1359–1374, 2020.
  30. Y. Chen, J. Zhao, Y. Wu, J. Huang, and X. S. Shen, “QoE-aware decentralized task offloading and resource allocation for end-edge-cloud systems: A game-theoretical approach,” IEEE Trans. Mob. Comput., 2022.
  31. Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic approach to computation offloading strategy optimization in end-edge-cloud computing,” IEEE Trans. Parallel Distributed Syst., vol. 33, no. 6, pp. 1503–1519, 2022.
  32. H. Pan, Y. Liu, G. Sun, J. Fan, S. Liang, and C. Yuen, “Joint power and 3D trajectory optimization for UAV-enabled wireless powered communication networks with obstacles,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2364–2380, 2023.
  33. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan, “Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131, 2013.
  34. C. Ding, J. Wang, M. Cheng, M. Lin, and J. Cheng, “Dynamic transmission and computation resource optimization for dense LEO satellite assisted mobile-edge computing,” IEEE Trans. Commun., vol. 71, no. 5, pp. 3087–3102, 2023.
  35. G. Cui, Q. He, X. Xia, F. Chen, F. Dong, H. Jin, and Y. Yang, “OL-EUA: Online user allocation for NOMA-based mobile edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 4, pp. 2295–2306, 2023.
  36. D. Monderer and L. S. Shapley, “Potential Games,” Games Econ. Behav., vol. 14, no. 1, pp. 124–143, 1996.
  37. D. L. Quang, Y. H. Chew, and B. H. Soong, “Potential games,” Springer International Publishing, 2016.
  38. S. Josilo and G. Dán, “Wireless and computing resource allocation for selfish computation offloading in edge computing,” in Proc. of IEEE INFOCOM, 2019, pp. 2467–2475.
  39. J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimization in UAV-assisted mobile-edge computing systems: Joint resource allocation and trajectory design,” IEEE Internet Things J., vol. 8, no. 10, pp. 8570–8584, 2021.
  40. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
  41. Z. Sun, G. Sun, Y. Liu, J. Wang, and D. Cao, “BARGAIN-MATCH: A game theoretical approach for resource allocation and task offloading in vehicular edge computing networks,” IEEE Trans. Mob. Comput., pp. 1–18, 2023.
  42. S. Josilo and G. Dán, “Selfish decentralized computation offloading for mobile cloud computing in dense wireless networks,” IEEE Trans. Mob. Comput., vol. 18, no. 1, pp. 207–220, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com